Follow us on twitter

A life course perspective on diabetes: developmental origins and beyond – published online 27/08/2019

Cover of Developmental Origins issue

This issue features a special series of reviews on different aspects of diabetes throughout the life course. Jonathan Wells (https://doi.org/10.1007/s00125-019-4944-8) begins the series by considering diabetes risk from an evolutionary perspective to explain how adverse environments can increase diabetes risk and that this risk can be passed on to subsequent generations. Next, Golden et al (https://doi.org/10.1007/s00125-019-4968-0) summarise racial/ethnic differences in the frequencies of type 2 diabetes across the life course, while Huebschmann et al (https://doi.org/10.1007/s00125-019-4939-5) discuss the physiological and behavioural mechanisms that may underlie variations between the sexes with respect to diabetes prevalence and cardiovascular risk over a life time. The next two reviews by Stein et al (https://doi.org/10.1007/s00125-019-4930-1) and Perng et al (https://doi.org/10.1007/s00125-019-4914-1) focus on developmental under- and overnutrition, respectively, and obesity/diabetes risk. Fernandez-Twinn et al (https://doi.org/10.1007/s00125-019-4951-9) look at how in utero exposures lead to the ‘developmental programming’ of offspring obesity and diabetes in later life via a variety of mechanisms, including epigenetics, while Sharp and Lawlor (https://doi.org/10.1007/s00125-019-4919-9) discuss how fathers might influence the development of obesity and diabetes in their offspring.

Besides maternal nutrition, another in utero exposure that has been linked to offspring obesity and diabetes in later life is exposure to environmental toxicants. In their review, Sargis and Simmons (https://doi.org/10.1007/s00125-019-4940-z) discuss how endocrine-disrupting chemicals in the environment have been implicated in diabetes pathogenesis throughout the life course.

With regard to type 1 diabetes, Craig et al (https://doi.org/10.1007/s00125-019-4942-x) look at how early life exposures contribute to type 1 diabetes risk. In terms of potential treatments for diabetes, Palmer et al (https://doi.org/10.1007/s00125-019-4934-x) explore the biological links between ageing and diabetes, with a specific focus on cellular senescence. We conclude with a review by Timpel et al (https://doi.org/10.1007/s00125-019-4941-y) discussing what governments should be doing. The reviews are accompanied by an editorial (https://doi.org/10.1007/s00125-019-4954-6).

All News
Top