Follow us on twitter

Celebrating 100 years of insulin

Insulin cover

As summarised in an Editorial by our Guest Editor and previous Editor-in-Chief, Sally Marshall (https://doi.org/10.1007/s00125-021-05417-3), our 2021 special issue (https://diabetologia-journal.org/collections/insulin-100/) celebrates 100 years since the discovery of insulin. Fralick and Zinman (https://doi.org/10.1007/s00125-020-05371-6) begin by recounting the story of insulin’s discovery in Toronto, Canada, in 1921/1922. This discovery meant that type 1 diabetes went from being a death sentence to a chronic condition. Despite this, globally, only one in two people currently have access to the insulin they require; Mbanya and colleagues (https://doi.org/10.1007/s00125-020-05375-2) outline the barriers to insulin access and suggest ways to overcome these. For those fortunate enough to have insulin access, hypoglycaemia remains a frequent complication of insulin therapy. Stephanie Amiel (https://doi.org/10.1007/s00125-020-05366-3) describes the immediate and cumulative consequences of hypoglycaemia, whilst Rory McCrimmon (https://doi.org/10.1007/s00125-020-05369-0) summarises the impact of recurrent hypoglycaemia on brain function. Chantal Mathieu (https://doi.org/10.1007/s00125-020-05354-7) suggests options for minimising hypoglycaemia risk, including patient education, insulin analogues, novel technologies and adjunct therapies. To help us understand how insulin therapies work, Yoon and Diano (https://doi.org/10.1007/s00125-021-05395-6) describe the central glucose-sensing mechanisms involved in the regulation of glucose metabolism, whilst Kahn et al (https://doi.org/10.1007/s00125-021-05415-5) outline current and evolving concepts of insulin action/resistance in type 2 diabetes. The authors state that understanding the primary source of metabolic disturbances and drivers of disease will offer important new avenues for the development of novel therapies. Boughton and Hovorka (https://doi.org/10.1007/s00125-021-05391-w) outline an excellent example of a novel therapeutic approach for diabetes, the closed-loop insulin-delivery system, summarising the supporting evidence and limitations of these devices. On a similar note, Weiss and colleagues (https://doi.org/10.1007/s00125-021-05422-6) introduce us to ‘smart’ insulin-delivery devices and molecular technologies designed to exploit feedback regulation. As an alternative approach, Douglas Melton (https://doi.org/10.1007/s00125-020-05367-2) explores the promise of stem cell-derived islet replacement therapy, whilst von Herrath and colleagues (https://doi.org/10.1007/s00125-021-05398-3) give an overview of therapeutics that may help to prevent the destruction of beta cells in the first place. Turning to diabetes complications, David Nathan (https://doi.org/10.1007/s00125-021-05397-4) demonstrates that insulin therapy ameliorates the long-term complications of type 1 diabetes, using findings from the DCCT and Epidemiology of Diabetes Interventions and Complications (EDIC) study. To complete this special series, Daniel Drucker (https://doi.org/10.1007/s00125-021-05396-5) looks to the future, highlighting the potential of smart insulins, fully automated insulin delivery, reprogramming of the immune system and stem cell-derived islets to alter the natural history and treatment of type 1 diabetes. This special series is in collaboration with the University of Toronto’s Insulin 100 Scientific Symposium (https://insulin100.com/).

All News
Top