Follow us on twitter

Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes – published online 20/07/2019

Fig from Hogenboom paper

Rick Hogenboom, Martin J. Kalsbeek, Nikita L. Korpel, Paul de Goede, Marit Koenen, Ruud M. Buijs, Johannes A. Romijn, Dick F. Swaab, Andries Kalsbeek, Chun-Xia Yi

The molecular clock is disturbed in peripheral tissues of individuals with type 2 diabetes. However, it is not known whether the brain master clock in the hypothalamic suprachiasmatic nucleus is also affected. In this issue, Hogenboom, Kalsbeek et al (https://doi.org/10.1007/s00125-019-4953-7) report data obtained from a unique collection of post-mortem human brain tissue donated for research by individuals with and without type 2 diabetes. Compared with non-diabetic donors, in donors with type 2 diabetes they found a loss of key neuropeptides and decreased numbers of the neuron-supporting astroglial cells that are of utmost importance for proper functioning of the neuronal clock network. According to the authors, the data suggest that disturbances in the daily physiology of people with type 2 diabetes, such as an irregular sleep/wake cycle and dysregulated glucose metabolism, may be due to impaired functioning of the central master clock. They, therefore, propose that, in addition to glucose-lowering medication, normalisation of circadian rhythms by behavioural and/or pharmacological interventions might be helpful to treat type 2 diabetes more effectively.

All News
Top