Follow us on twitter

Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes – published online 03/01/2019

Fig 1 from Groen

Martin B. Groen, Trine A. Knudsen, Stine H. Finsen, Bente K. Pedersen, Ylva Hellsten, Stefan P. Mortensen

Type 2 diabetes is associated with vascular complications, including reduced blood flow in tissues. Plasma ATP is a potent vasodilator that is thought to play a role in the local regulation of blood flow, and it is possible that ATP signalling is impaired in individuals with type 2 diabetes. In this issue, Groen et al (https://doi.org/10.1007/s00125-018-4790-0)  measured femoral arterial and venous plasma ATP levels during normoxia, hypoxia and one-legged knee-extensor exercise in nine individuals with type 2 diabetes and eight control individuals. They report that individuals with type 2 diabetes had a blunted increase in ATP and blood flow, compared with non-diabetic individuals, when exposed to hypoxia (a potent stimulus for ATP release). The authors also found that, compared with the non-diabetic group, individuals with type 2 diabetes had lower venous plasma ATP levels and blood flow in the exercising leg during the one-legged knee-extensor exercise. In additional experiments, the individuals with type 2 diabetes had a lower vasodilatory response to exogenous ATP. Restoration of ATP release (e.g. by phosphodiesterase 3- or phosphodiesterase 5-inhibitors) could, therefore, be a novel treatment to help restore tissue perfusion in individuals with type 2 diabetes.

All News
Top