Follow us on twitter

SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism – published online 06/01/2021

lithovius GA

Väinö Lithovius, Jonna Saarimäki-Vire, Diego Balboa, Hazem Ibrahim, Hossam Montaser, Tom Barsby, Timo Otonkoski

Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes often leads to life-threatening hypoglycaemia. Current treatment options are inadequate and many patients have to undergo radical pancreatic surgery. The development of new pharmacological treatment options is hindered by the lack of disease-specific beta cell models. In this issue, Lithovius et al ( set out to create a new disease model of congenital hyperinsulinism due to loss-of-function of the KATP channel (KATPHI) to circumvent the issue of limited patient material. They used induced pluripotent stem cells (iPSCs), derived from an individual with  KATPHI, as well as CRISPR-Cas9 mutation-corrected iPSCs for control purposes. iPSCs were differentiated into pancreatic islet-like cells, allowing comparison of mutated and corrected cells, which are isogenic, both in vitro and after transplantation into mice. The authors observed insulin hypersecretion in vitro and in vivo, along with increased beta cell proliferation and mass, thus highlighting the relevance of their model for KATPHI research. They concluded that this model could serve as a platform for developing new treatment options for KATPHI.

All News