Follow us on twitter

Editor’s Choice

Hindrik Mulder portrait

Competition for publication in Diabetologia continues to grow, and less than 20% of papers are accepted. Of all the high-quality papers I want to draw your attention to articles that I think stand out in some regard and are very interesting. The articles are summarised here. Our publisher, Springer, has kindly made the full text of each of these papers freely available. I hope you enjoy reading them! These will be featured ‘up front’ in the print issue and here on our website. Hindrik Mulder, Editor

SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism – published online 06/01/2021

lithovius GA

Väinö Lithovius, Jonna Saarimäki-Vire, Diego Balboa, Hazem Ibrahim, Hossam Montaser, Tom Barsby, Timo Otonkoski

Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes often leads to life-threatening hypoglycaemia. Current treatment options are inadequate and many patients have to undergo radical pancreatic surgery. The development of new pharmacological treatment options is hindered by the lack of disease-specific beta cell models. In this issue, Lithovius et al (https://doi.org/10.1007/s00125-020-05346-7) set out to create a new disease model of congenital hyperinsulinism due to loss-of-function of the KATP channel (KATPHI) to circumvent the issue of limited patient material. They used induced pluripotent stem cells (iPSCs), derived from an individual with  KATPHI, as well as CRISPR-Cas9 mutation-corrected iPSCs for control purposes. iPSCs were differentiated into pancreatic islet-like cells, allowing comparison of mutated and corrected cells, which are isogenic, both in vitro and after transplantation into mice. The authors observed insulin hypersecretion in vitro and in vivo, along with increased beta cell proliferation and mass, thus highlighting the relevance of their model for KATPHI research. They concluded that this model could serve as a platform for developing new treatment options for KATPHI.

Structural and functional polarisation of human pancreatic beta cells in islets from organ donors with and without type 2 diabetes – published online 05/01/2021

Cottle GA

Louise Cottle, Wan Jun Gan, Ian Gilroy, Jaswinder S. Samra, Anthony J. Gill, Thomas Loudovaris, Helen E. Thomas, Wayne J. Hawthorne, Melkam A. Kebede, Peter Thorn

Accumulating evidence demonstrates that rodent beta cells are structurally and functional polarised. In this issue, Cottle et al (https://doi.org/10.1007/s00125-020-05345-8) investigated whether human beta cells are also polarised. This is an important question given the anatomical differences between rodent and human islets. The authors used pancreatic slices to preserve islet structure and 3D immunostaining to show that human beta cells are polarised with an apical–basal orientation, locating the basal pole of each cell at the capillary interface. Presynaptic scaffold proteins were enriched in this basal region, suggesting local specialisation for insulin granule exocytosis. The authors provide functional evidence indicating that the orientation of human beta cells is a focal adhesion-mediated response to extracellular matrix proteins secreted by capillary endothelial cells. They conclude that this evidence—that human beta cells are polarised—advances our understanding of normal islet function. They state that, clinically, these findings are relevant for understanding type 2 diabetes, in which islet capillary structure changes, and for cell-based treatments for type 1 diabetes.

Association between diabetes and haematological malignancies: a population-based study – published online 06/01/2021

Gong GA

Inna Y. Gong, Matthew C. Cheung, Stephanie Read, Yingbo Na, Iliana C. Lega, Lorraine L. Lipscombe 

While diabetes has been implicated as a risk factor for cancer, much of the data to date have focused on solid malignancies, while less conclusive data exist for diabetes and haematological malignancies. In this issue, Gong et al (https://doi.org/10.1007/s00125-020-05338-7) used Canadian population-based data to evaluate the incidence and prognosis of haematological malignancies among individuals with diabetes. They showed that diabetes is associated with a higher likelihood of developing a haematological malignancy. The authors also demonstrated that individuals with diabetes and haematological malignancy have higher all-cause mortality and cancer-specific mortality than those without diabetes. Importantly, these associations were seen even beyond 1 year after a diabetes diagnosis, which argues against a detection bias due to enhanced health contact. These findings suggest that diabetes adversely affects risk and prognosis of haematological malignancy , and that diabetes prevention strategies may not only reduce diabetes burden but may also potentially improve the risk of haematological malignancy.

A healthy lifestyle mitigates the risk of heart disease related to type 2 diabetes: a prospective nested case–control study in a nationwide Swedish twin cohort – published online 10/11/2020

yang GA

Rongrong Yang, Hui Xu, Nancy L. Pedersen, Xuerui Li, Jing Yu, Cuiping Bao, Xiuying Qi, Weili Xu

To date, epidemiological studies have shown that type 2 diabetes increases the risk of cardiovascular disease, which includes coronary heart disease and stroke. However, it is still unclear whether type 2 diabetes is specifically associated with the risk of heart disease and its subtypes, and whether a healthy lifestyle could reduce the risk of heart disease related to type 2 diabetes. In this issue, Yang, Xu et al (https://doi.org/10.1007/s00125-020-05324-z) report that type 2 diabetes is associated with a more than fourfold increased risk of heart disease, including coronary heart disease, cardiac arrhythmias and heart failure. Genetic and early-life familial environmental background did not account for the association between type 2 diabetes and heart disease. However, findings suggested that adulthood lifestyle factors were important in this association: patients with type 2 diabetes who maintained a healthy lifestyle (consisting of being a non-smoker, no/mild alcohol consumption, regular physical activity and not being overweight) had a significantly lower risk of heart disease than those with an unfavourable lifestyle. The authors concluded that these findings highlight the importance of a healthy lifestyle in the prevention of heart disease among individuals with type 2 diabetes.

Reducing intergenerational obesity and diabetes risk – published online 06/01/2021

Katherine A. Sauder, Natalie D. Ritchie

Strategies promoting the health of women of reproductive age are urgently needed to reduce intergenerational transmission of obesity and diabetes risk. In this issue, Sauder and Ritchie (https://doi.org/10.1007/s00125-020-05341-y) summarise findings and gaps arising from published studies of prenatal and preconception lifestyle interventions. They demonstrate that prenatal interventions have shown some success in limiting gestational weight gain and reducing risk of gestational diabetes but have had little impact on offspring outcomes at birth or beyond. Preconception interventions have been successful in reducing weight and improving glucose metabolism by the end of intervention, but whether effects were sustained to conception or whether the interventions had an impact on offspring outcomes is unclear. The authors conclude that future clinical trials should include interventions with high potential for dissemination, diverse populations, thorough maternal phenotyping from enrolment through to conception and pregnancy, and rigorous assessment of offspring obesity and diabetes risks from birth onwards, including into the third generation. The figure from this review is available as a downloadable slide

Effects of long-term vitamin D and n-3 fatty acid supplementation on inflammatory and cardiac biomarkers in patients with type 2 diabetes: secondary analyses from a randomised controlled trial – published online 24/10/2020

Limonte GA

Christine P. Limonte, Leila R. Zelnick, John Ruzinski, Andrew N. Hoofnagle, Ravi Thadhani, Michal L. Melamed, I-Min Lee, Julie E. Buring, Howard D. Sesso, JoAnn E. Manson, Ian H. de Boer

Immune system activation contributes to the development of diabetes complications. Vitamin D and n-3 fatty acids have been recognised for their anti-inflammatory effects in laboratory models, with mixed evidence from trials in diabetes populations. In this issue, Limonte et al (https://doi.org/10.1007/s00125-020-05300-7) report results of changes in serum concentrations of inflammatory and cardiovascular biomarkers from the Vitamin D and Omega-3 Trial to Prevent and Treat Diabetic Kidney Disease (VITAL-DKD), in which 1312 adults with type 2 diabetes were randomised to supplementation with vitamin D3 (2000 IU/day) and/or n-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid; 1 g/day) or placebo and followed for 5 years. The authors found that supplementation did not lead to a decline in serum levels of IL-6, high-sensitivity C-reactive protein or N-terminal pro-B-type natriuretic peptide. They conclude that this study tilts the balance of available evidence to favour no benefit of these interventions on inflammation and suggests that supplementation is unlikely to have a positive impact on diabetes complications for which inflammation is an underlying cause.

Increased particle size of triacylglycerol-enriched remnant lipoproteins, but not their plasma concentration or lipid content, augments risk prediction of incident type 2 diabetes – published online 07/11/2020

Carvalho GA

Luiz Sérgio F. Carvalho, Isabela M. Benseñor, Ana C. C. Nogueira, Bruce B. Duncan, Maria I. Schmidt, Michael J. Blaha, Peter P. Toth, Steven R. Jones, Raul D. Santos, Paulo A. Lotufo, Andrei C. Sposito, on behalf of the ELSA-Brasil study

Little is known regarding risk prediction of type 2 diabetes before the detection of glucose abnormalities; however, up to 3% of individuals in the general population who are not in the impaired fasting glucose range develop diabetes each year. In this issue, Carvalho et al (https://doi.org/10.1007/s00125-020-05322-1) hypothesise that, among the pathophysiological processes that play a role in type 2 diabetes, the loading of triacylglycerol-enriched remnant lipoproteins (TRLs) with lipids (resulting in large particles) could be useful for risk prediction. The authors report that, when included in a risk prediction model, TRL particle diameter improved the risk prediction of diabetes after 3.7 years of follow-up as compared with a model that did not include this variable, particularly in individuals with normal HbA1c levels at baseline. These data support TRL particle size as a risk factor that is changed early in the pathophysiological processes that lead to the development of type 2 diabetes, even before glucose abnormalities are established.

 

The impact of hospital-diagnosed depression or use of antidepressants on treatment initiation, adherence and HbA1c/LDL target achievement in newly diagnosed type 2 diabetes – published online 19/10/2020

Rohde GA

Christopher Rohde, Jakob S. Knudsen, Norbert Schmitz, Søren Dinesen Østergaard, Reimar W. Thomsen

Incident depression in type 2 diabetes is associated with poor self-care and suboptimal treatment adherence. However, it is not known how pre-existing depression treatment relates to quality of care for individuals with newly diagnosed type 2 diabetes. In this issue, Rohde et al (https://doi.org/10.1007/s00125-020-05303-4) report that individuals with newly diagnosed type 2 diabetes who already receive treatment for depression are more likely than others to initiate and be adherent to glucose-lowering and lipid-modifying treatment. Pre-existing depression treatment was also associated with successful attainment of LDL-cholesterol and HbA1c treatment targets among individuals with type 2 diabetes. The authors suggest that these findings may be driven by the fact that individuals with ongoing depression treatment are already familiar with the healthcare system and drug treatment, and that effective treatment of depression, in itself, may improve diabetes care.

Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: systematic review and meta-analyses – published online 14/12/2020

nanayakkara GA

Natalie Nanayakkara, Andrea J. Curtis, Stephane Heritier, Adelle M. Gadowski, Meda E. Pavkov, Timothy Kenealy, David R. Owens, Rebecca L. Thomas, Soon Song, Jencia Wong, Juliana C.-N. Chan, Andrea O.-Y. Luk, Giuseppe Penno, Linong Ji, Viswanathan Mohan, Anandakumar Amutha, Pedro Romero-Aroca, Danijela Gasevic, Dianna J. Magliano, Helena J. Teede, John Chalmers, Sophia Zoungas

Type 2 diabetes is increasingly diagnosed in younger adults; however, the relationship between age at diagnosis and diabetes complications is unclear. In this issue, Nanayakkara et al (https://doi.org/10.1007/s00125-020-05319-w) integrate data from 1.3 million individuals from 30 countries to conduct the first systematic review and meta-analyses exploring associations between age at diabetes diagnosis and subsequent complications. Each 1 year increase in age at diabetes diagnosis was associated with a 4%, 3% and 5% decreased risk of all-cause mortality, macrovascular disease and microvascular disease, respectively, adjusted for current age. The authors propose that, over time, the effects of both ageing and diabetes duration may be compounded, resulting in premature complications and death in people diagnosed with type 2 diabetes at a younger age. Early and sustained interventions to optimise glycaemic control and cardiovascular risk profiles in those with established type 2 diabetes, and measures to delay the onset of type 2 diabetes in high-risk groups are crucial to reduce future diabetes-related morbidity and mortality.

Brain JNK and metabolic disease – published online 16/11/2020

Rubén Nogueiras, Guadalupe Sabio

Obesity has become a global epidemic. In recent years, major efforts have been made to define the role played by the central nervous system (CNS) in this disease. Several CNS circuits are altered in obese individuals, and these changes can induce uncontrolled hunger and/or decreased energy expenditure, the latter being associated with physical inactivity, reduced baseline metabolism and poor thermogenic capacity. c-Jun N-terminal kinases (JNKs) in the hypothalamus are among the signalling molecules activated during obesity that may contribute to deleterious molecular adaptations. In this issue, Nogueiras and Sabio (https://doi.org/10.1007/s00125-020-05327-w) review recent findings that reveal opposing pro- and anti-obesogenic actions of JNK family members in the CNS—more precisely the hypothalamus—with regard to the control of food intake and energy expenditure. The authors also discuss the future potential of these kinases as targets in the treatment of obesity. The figures from this review are available as a downloadable slideset

Hypothalamic MC4R regulates glucose homeostasis through adrenaline-mediated control of glucose reabsorption via renal GLUT2 in mice – published online 14/10/2020

de Souza Cordeiro GA

Leticia Maria de Souza Cordeiro, Arwa Elsheikh, Nagavardhini Devisetty, Donald A. Morgan, Steven N. Ebert, Kamal Rahmouni, Kavaljit H. Chhabra

Obesity and increased plasma insulin levels (insulin resistance) are major risk factors for type 2 diabetes in the general population. Yet, individuals with melanocortin 4 receptor (MC4R) deficiency either do not develop, or are at a relatively lower risk of developing, diabetes. To understand why MC4R deficiency prevents diabetes despite obesity and insulin resistance, de Souza Cordeiro et al (https://doi.org/10.1007/s00125-020-05289-z) investigated the function of this protein in glucose regulation using mouse models. The authors observed that lack of MC4R in mice increased glucosuria, thereby keeping blood glucose levels normal. The increase in urinary glucose excretion was due to reduced plasma adrenaline and expression of the glucose transporter GLUT2 in the kidneys. These findings demonstrate that elevated glucosuria may be one of the reasons why MC4R deficiency prevents diabetes. Based on the study findings, the authors propose that blocking kidney-specific GLUT2 has the potential to treat diabetes.

Paracrine regulation of somatostatin secretion by insulin and glucagon in mouse pancreatic islets – published online 12/10/2020

Svendsen GA

Berit Svendsen, Jens J. Holst

The alpha and beta cells of the islets of Langerhans secrete glucagon and insulin, which play an important role in regulating plasma glucose concentration, whilst the islet delta cells produce somatostatin, which is known to be able to inhibit the secretion of the other two hormones. In the islets, the three cell types are arranged in a complex pattern that, together with the capillary network, seems to be consistent with extensive paracrine interactions. For example, insulin is thought to directly inhibit glucagon secretion and recent research has revealed that local glucagon secretion is also essential for protein-stimulated insulin secretion. However, whether somatostatin secretion is regulated by paracrine signalling from glucagon and insulin is less clear. In this issue, Svendsen and Holst (https://doi.org/10.1007/s00125-020-05288-0) describe how somatostatin powerfully inhibits glucagon secretion and, conversely, how  glucagon secretion provides a powerful local stimulus for somatostatin secretion, linking the two in a reciprocal feed-back circuit.  Insulin did not directly affect secretion of somatostatin in mouse islets. The authors conclude that the results underline the importance of paracrine intra-islet regulation and suggests that a defect in one hormone will affect the secretion of other islet hormones. Thus, knowledge about islet somatostatin secretion appears to be essential for the understanding of integrated islet function.

Maternal blood glucose level and offspring glucose–insulin homeostasis: what is the role of offspring adiposity? – published online 06/10/2020

Francis GA

Ellen C. Francis, Dana Dabelea, Brandy M. Ringham, Katherine A. Sauder, Wei Perng

Maternal blood glucose status during pregnancy is associated with offspring adiposity and metabolic health; however, it is unclear whether offspring adiposity at birth and/or in childhood mediates the association between maternal glucose and offspring glucose–insulin homeostasis. In this issue, Francis et al (https://doi.org/10.1007/s00125-020-05294-2) report that higher maternal HbA1c was associated with higher fasting glucose and lower insulin sensitivity in offspring. Further, this relationship was not mediated by offspring adiposity at birth, at age 4–7 years, or cumulatively across the two life stages. The authors suggest that the effect of maternal glucose on offspring glucose–insulin homeostasis may operate through alternate pathways, such as fetal programming of the adipoinsular axis or pancreatic beta cell development and function. This highlights the importance of the pregnancy period for prevention efforts aimed at improving early childhood metabolic health.

Presumption of guilt for T cells in type 1 diabetes: lead culprits or partners in crime depending on age of onset? – published online 21/10/2020

Carre GA

Alexia Carré, Sarah J. Richardson, Etienne Larger, Roberto Mallone

It is increasingly recognised that autoimmune type 1 diabetes is a tale of two main characters that both play a role in disease pathogenesis: the T cell and the beta cell. On one hand, the presumption of innocence traditionally granted to beta cells requires revision, as recently reviewed in Diabetologia by Mallone and Eizirik (https://doi.org/10.1007/s00125-020-05176-7) . On the other hand, the presumption of guilt that T cells are often charged with may also need to be reconsidered. In this review, Carré et al (https://doi.org/10.1007/s00125-020-05298-y) evaluate genetic, histopathological, functional and clinical evidence to argue that T cells may behave as ‘lead culprits’ or ‘partners in crime’ in type 1 diabetes, depending on specific disease endotypes, mostly related to age. Increasing evidence points to the existence of a younger-onset endotype with more aggressive autoimmunity and an older-onset endotype with more vulnerable beta cells. Current challenges and opportunities for dissecting this disease heterogeneity are discussed. The figures from this review are available as a downloadable slideset.

Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes – published online 12/10/2020

Alonge GA

Kimberly M. Alonge, David A.  D’Alessio, Michael W. Schwartz

In this issue, Alonge and colleagues (https://doi.org/10.1007/s00125-020-05293-3) present a framework for understanding the brain’s role in glucose homeostasis. Their review outlines a crucial role for the brain in sensing blood glucose levels and they cite evidence in support of the concept that defects in this process are fundamental to the pathogenesis of type 2 diabetes. This framework also proposes that the close association between obesity and type 2 diabetes arises from a shared defect in overlapping and highly integrated brain neurocircuitry governing energy homeostasis and glucose homeostasis. The authors highlight the translational potential of this framework by summarising evidence that, in preclinical models of type 2 diabetes, blood glucose levels can be restored to normal in a sustained manner by therapies targeting the brain. They conclude that these considerations suggest that, unlike current non-surgical treatment options, strategies targeting the brain have the potential to induce sustained remission of type 2 diabetes. The figures from this review are available as a downloadable slideset.

Augmented mitochondrial energy metabolism is an early response to chronic glucose stress in human pancreatic beta cells – 22/09/2020

Isabelle Chareyron, Stefan Christen, Sofia Moco, Armand Valsesia, Steve Lassueur, Loïc Dayon, Claes B. Wollheim, Jaime Santo Domingo, Andreas Wiederkehr

Type 2 diabetes causes mitochondrial dysfunction in pancreatic beta cells. In this issue, Chareyron et al (https://doi.org/10.1007/s00125-020-05275-5) studied whether glucose stress alone results in gradual loss of mitochondrial function in human beta cells in vitro. Unexpectedly, at early stages, chronic glucose stress (4 day exposure to 11 mmol/l glucose) was found to over-activate mitochondria. Basal mitochondrial respiration and the cytosolic ATP/ADP ratio remained markedly elevated when human islets were returned to resting glucose conditions. The inability of mitochondria to return to a resting state was associated with metabolic dysregulation, including the accumulation of glycerol-3-phosphate and elevation of tricarboxylic acid (TCA) cycle and pentose phosphate pathway metabolites. This resulted in a slight elevation of basal insulin secretion and poor glucose-induced beta cell activation. Inhibition of mitochondrial pyruvate transport partially reversed the negative effects of chronic glucose overload. The authors propose that protecting mitochondria from nutrient overload may allow beta cells to return to a resting state and regain nutrient responsiveness in a way that may prevent the conversion from impaired fasting glucose and/or glucose tolerance to overt type 2 diabetes.

Costs of diabetes complications: hospital-based care and absence from work for 392,200 people with type 2 diabetes and matched control participants in Sweden – published online 24/09/2020

Emelie Andersson, Sofie Persson, Nino Hallén, Åsa Ericsson, Desirée Thielke, Peter Lindgren, Katarina Steen Carlsson, Johan Jendle

The medical consequences of the complications of type 2 diabetes are well known. There is less evidence, however, on the impact of individual diabetic complications on the overall societal burden, including its impact on work life. In this issue, Andersson, Persson et al (https://doi.org/10.1007/s00125-020-05277-3) analysed the costs of hospital-based care and work absence related to individual macrovascular and microvascular complications of type 2 diabetes. The authors used individual-level data from 1997–2016 in a nationwide study of 392,200 people with type 2 diabetes in Sweden. Costs directly attributed to complications were derived by comparison with control participants from the general population who were matched for year of birth, sex and region of residence in the index year. High costs of hospital-based care were directly attributed to diabetes complications, but costs of work absence were found to be almost twice as high per person using regression analyses. Key drivers of costs were the macrovascular complications angina pectoris, heart failure and stroke, and the microvascular complications eye disease, kidney disease and neuropathy. The authors conclude that these findings highlight the need to consider outcomes beyond health when developing treatments for type 2 diabetes, as well as health policy.

Antibody response to multiple antigens of SARS-CoV-2 in patients with diabetes: an observational cohort study – published online 08/10/2020

Vito Lampasona, Massimiliano Secchi, Marina Scavini, Elena Bazzigaluppi, Cristina Brigatti, Ilaria Marzinotto, Alberto Davalli, Amelia Caretto, Andrea Laurenzi, Sabina Martinenghi, Chiara Molinari, Giordano Vitali, Luigi Di Filippo, Alessia Mercalli, Raffaella Melzi, Cristina Tresoldi, Patrizia Rovere-Querini, Giovanni Landoni, Fabio Ciceri, Emanuele Bosi, Lorenzo Piemonti

Diabetes has been associated with an excess risk of severe coronavirus disease 2019 (COVID-19) pneumonia. However, it is unclear whether the poor clinical outcome of COVID-19 in individuals with diabetes is associated with a quantitative or qualitative defect in the antibody response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In this issue, Lampasona  et al (https://doi.org/10.1007/s00125-020-05284-4) report that the antibody response against multiple SARS-CoV-2 antigens in individuals with diabetes was superimposable  to that of non-diabetic participants with regard to timing, titres and classes, and responses were not influenced by glucose levels. Moreover, blood glucose levels, per se, were strongly positively associated with increased mortality risk for COVID-19 pneumonia, even in individuals without previously diagnosed diabetes. SARS-CoV-2 spike receptor-binding domain IgG positivity was associated with a remarkable protective effect (about 60% reduction in mortality rate) in participants with diabetes. The authors conclude that this evidence allows for cautious optimism regarding the efficacy of future vaccines against SARs-COV-2 in individuals with diabetes.

Intestinal microbial metabolites in human metabolism and type 2 diabetes – published online 03/09/2020

Hilde Herrema, Jan Hendrik Niess

High-throughput technologies have helped to characterise the microbiome in individuals with the metabolic syndrome and type 2 diabetes. Emerging evidence suggests that it is not only the microorganisms and their structural components that contribute to the development of these conditions, but also the metabolites that they produce.  In this issue, Herrema and Niess (https://doi.org/10.1007/s00125-020-05268-4) discuss recent advances in our understanding of how gut bacterial metabolites are sensed by individuals with the metabolic syndrome, potentially contributing to the development of type 2 diabetes. They explain how the gut microbiome, in response to dietary components, produces bacterial metabolites which influence processes implicated in the development of type 2 diabetes, including the intestinal immune system and the entero-endocrine system. Further studies on the impact of dietary components on gut bacterial metabolite production, as well as research into the receptors that recognise bacterial metabolites, promise to reveal new pathways that could be targeted for the treatment of the metabolic syndrome and type 2 diabetes. The figure from this review is available as a downloadable slide.

Next-generation epidemiology: the role of high-resolution molecular phenotyping in diabetes research – published online 25/08/2020

Paul W. Franks, Hugo Pomares-Millan

Major advances in technologies that allow detailed molecular characterisations of many thousands of people have transformed epidemiology into a discipline at the forefront of biomedicine.  In this issue, Franks and Pomares-Millan (https://doi.org/10.1007/s00125-020-05246-w) summarise recent advances in diabetes epidemiology that have been made possible through the availability of detailed genetic and molecular phenotype data in large cohorts, combined with the development and application of complex analytical processes. They explain that these studies have revealed novel molecular pathways that harbour promising targets for drug discovery, yielded evidence of gene–environment interactions that might facilitate targeted prevention of diabetes, and enabled the restratification of diabetes into aetiological subtypes that help elucidate the heterogeneous nature of type 2 diabetes. The figure from this review is available as a downloadable slide.

Increase in endogenous glucose production with SGLT2 inhibition is attenuated in individuals who underwent kidney transplantation and bilateral native nephrectomy – published online 22/08/2020

Giuseppe Daniele, Carolina Solis-Herrera, Angela Dardano, Andrea Mari, Andrea Tura, Laura Giusti, Jancy J. Kurumthodathu, Beatrice Campi, Alessandro Saba, Anna Maria Bianchi, Carla Tregnaghi, Maria Francesca Egidi, Muhammad Abdul-Ghani, Ralph DeFronzo, Stefano Del Prato

The expected reduction in plasma glucose concentration mediated by sodium–glucose cotransporter 2 (SGLT2) inhibitors is partially offset by a concomitant increase in endogenous glucose production. The signal mediating such a paradoxical response to SLT2-inhibition is currently unknown. In this issue, Daniele, Solis-Herrera et al (https://doi.org/10.1007/s00125-020-05254-w) demonstrate that SGLT2 inhibition in non-diabetic individuals who have undergone kidney transplantation with removal of native kidneys is associated with attenuation of the paradoxical stimulation of endogenous glucose production. They explain that these results suggest the existence of a neuronal axis linking the kidney and the liver that modulates endogenous glucose production in response to urinary glucose loss induced by SGLT2 inhibition. Based on these findings, the authors propose that SGLT2 inhibition can activate efferent renal nerves, generating a signal that augments endogenous (hepatic) glucose production to compensate for the urinary glucose loss.

An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study – published online 08/09/2020

Shuai Yuan, Susanna C. Larsson

Observational studies have revealed a large number of possible risk factors for type 2 diabetes but whether the reported associations are causal remains unclear. In this issue, Shuai Yuan and Susanna Larsson (https://doi.org/10.1007/s00125-020-05253-x) identified causal associations of 34 exposures (18 risk factors and 16 protective factors) with type 2 diabetes under a wide-angled Mendelian randomisation framework. Insomnia was identified as a novel causal risk factor for type 2 diabetes. Eight associations remained after adjustment for adulthood BMI. In addition, there were 21 possible associations. The authors conclude that these findings imply that prevention strategies for type 2 diabetes need to be considered from multiple perspectives.

Association of early-onset diabetes, prediabetes and early glycaemic recovery with the risk of all-cause and cardiovascular mortality – published online 21/08/2020

Sung Min Kim, Gyeongsil Lee, Seulggie Choi, Kyuwoong Kim, Su-Min Jeong, Joung Sik Son, Jae-Moon Yun, Sin Gon Kim, Seung-sik Hwang, Seong Yong Park, Yeon-Yong Kim, Sang Min Park 

Recently, the increasing incidence of diabetes among young adults aged 20-30 years has added to the overall disease burden. Individuals with early-onset diabetes have similar or higher cardiovascular risk than those with late-onset diabetes.  In this issue, Kim and Lee and colleagues (https://doi.org/10.1007/s00125-020-05252-y) investigated whether newly diagnosed early-onset diabetes, prediabetes and glycaemic recovery among young adults is associated with incident cardiovascular disease or mortality using data from a nationwide cohort study of 2,502,375 young adults without cardiovascular disease at baseline. They report that individuals with early-onset diabetes and prediabetes had increased risks of incident CVD and all-cause mortality at the 10 year follow up. Notably, in individuals with early glycaemic recovery from diabetes or prediabetes, the risks of incident 10-year CVD and all-cause or CVD mortality were reduced. The authors conclude that maintenance of glycaemic control in young adults may be important for the prevention of CVD and all-cause mortality

Next steps in the identification of gene targets for type 1 diabetes – published online 14/08/2020

Struan F. A. Grant, Andrew D. Wells, Stephen S. Rich

Type 1 diabetes is characterised by young age at onset, requirement for exogenous insulin for survival and a strong genetic predisposition in the absence of family history. Genetics account for approximately half of total risk, yet, unlike other diseases, a single genomic region (HLA) constitutes ~50% of that genetic component. Much of the remaining genetic risk has been identified, with the vast majority of variants residing in DNA regulatory regions. In this issue, Grant et al (https://doi.org/10.1007/s00125-020-05248-8) provide a perspective on the transition from an allelic association to the effect of genetic variation on tissue-specific expression, identification of target genes of the associated variants and use of genetic data to identify those individuals at risk of type 1 diabetes prior to clinical presence of symptoms. The authors suggest that functional genomic studies, increased ethnic diversity of individuals included in such studies, and improved characterisation of chromosomal landscapes will be necessary to reveal novel prevention and treatment strategies. The figure in this review is available as a downloadable slide.

Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men – published online 06/08/2020

John A. Hawley, Paolo Sassone-Corsi, Juleen R. Zierath

In the current ‘obesogenic’ environment there is growing popular and scientific interest in how the timing and frequency of meals impacts metabolic health, with an appreciation that the duration of which food is consumed effects numerous physiological and metabolic processes. Such ‘chrono-nutrition’ is aimed at optimising metabolism by timing nutrient intake to the acrophases of daily metabolic rhythms via manipulation of the feeding–fasting cycle. In this issue, Hawley and colleagues (https://doi.org/10.1007/s00125-020-05238-w) review recent research from both animal and human studies demonstrating that dietary protocols incorporating chronic energy restriction, intermittent fasting and time-restricted feeding improve multiple cardiometabolic markers associated with obesity and type 2 diabetes risk. The figure in this review is available as a downloadable slide.

The pancreas in health and disease – published online 07/09/2020

The focus of this year’s special issue is ‘The pancreas in health and in diabetes’, introduced in an editorial (https://doi.org/10.1007/s00125-020-05235-z). Atkinson et al (https://doi.org/10.1007/s00125-020-05203-7)begin by reviewing the current evidence on human pancreatic anatomy and the changes that occur in individuals with type 1 or type 2 diabetes. Jennings and colleagues (https://doi.org/10.1007/s00125-020-05161-0) go on to discuss how alterations in important steps in the development of the mammalian pancreas may contribute to the abnormalities seen in diabetes. Abnormal insulin production by the pancreas underlies the pathogenesis of diabetes, and Vasiljević and coauthors (https://doi.org/10.1007/s00125-020-05192-7) outline the post-transcriptional mechanisms regulating insulin production and how their deficits can cause diabetes. The sole source of circulating insulin is the pancreatic beta cell. In their review, Rutter et al (https://doi.org/10.1007/s00125-020-05205-5) discuss the specialisations that allow this cell to perform its unique role. Autoimmune beta cell destruction results in type 1 diabetes and Mallone and Eizirik (https://doi.org/10.1007/s00125-020-05176-7) consider why beta cells are vulnerable autoimmune targets. Esser et al (https://doi.org/10.1007/s00125-020-05245-x) go on to describe models to explain the pathogenesis of hyperglycaemia in type 2 diabetes. Age is one of the main risk factors for developing type 2 diabetes and Cristina Aguayo-Mazzucato (https://doi.org/10.1007/s00125-020-05185-6) summarises the functional changes that occur in ageing beta cells. Diabetes can also occur as a consequence of a wide variety of exocrine pancreas diseases, as discussed by Rickels et al (https://doi.org/10.1007/s00125-020-05210-8). Redondo et al (https://doi.org/10.1007/s00125-020-05211-7) propose a paradigm to help explain the heterogeneity within and between diabetes types, concluding that this new approach may facilitate personalised medicine in diabetes. In their review, Bellin and Dunn (https://doi.org/10.1007/s00125-020-05184-7) detail the variety of transplant strategies available for individuals with type 1 diabetes. Looking more closely at the islet itself, Mark Huising (https://doi.org/10.1007/s00125-020-05213-5) describes the cellular components of this special structure that are important to its role. Moede et al (https://doi.org/10.1007/s00125-020-05196-3) focus specifically on the importance of islet alpha cell–beta cell communication for glucose homeostasis, while Almaça et al (https://doi.org/10.1007/s00125-020-05186-5) summarise how different cellular and acellular components of the islet microenvironment can have an impact on endocrine cell function. Faber et al (https://doi.org/10.1007/s00125-020-05204-6) describe both the anatomy of autonomic nervous system input to the islet and the functional importance of autonomic nervous system outflow to the islet across a variety of physiological challenges to glucose homeostasis. Finally, Arrojo e Drigo et al (https://doi.org/10.1007/s00125-020-05159-8) conclude by discussing approaches to connect molecular profiles with functional properties underlying insulin secretion.

The metabolic syndrome in pregnancy and its association with child telomere length – published online 29/07/2020

Dale McAninch, Tina Bianco-Miotto, Kathy L. Gatford, Shalem Y. Leemaqz, Prabha H. Andraweera, Amy Garrett, Michelle D. Plummer, Gus A. Dekker, Claire T. Roberts, Lisa G. Smithers, Jessica A. Grieger

The metabolic syndrome is a clustering of cardiovascular risk factors. In the adult population, the metabolic syndrome associates with increased risk for cardiovascular and related diseases. Telomere length is a biomarker of ageing and is associated with the development of future chronic diseases. Maternal exposures in utero impact offspring health. In this issue, McAninch et al (https://doi.org/10.1007/s00125-020-05242-0) investigated whether maternal metabolic syndrome associates with telomere length, a biomarker of ageing, in the child. The authors found that the 10-year-old children of mothers who had the metabolic syndrome in pregnancy had 14% shorter telomeres than children of mothers who did not have the metabolic syndrome during pregnancy. Interestingly, anthropometric measures were similar in children of mothers who did and did not have the metabolic syndrome in pregnancy. The authors conclude that, although further studies are warranted, early assessment of telomere length in children may provide insight into their potential future chronic disease risk.

Multi-layered epigenetic regulation of IRS2 expression in the liver of obese individuals with type 2 diabetes – published online 24/07/2020

Christin Krause, Cathleen Geißler, Heidi Tackenberg, Alexander T. El Gammal, Stefan Wolter, Joachim Spranger, Oliver Mann, Hendrik Lehnert, Henriette Kirchner

Epigenetic regulation of gene expression is altered in type 2 diabetes. However, epigenetic regulation of insulin signalling in key metabolic tissues in type 2 diabetes is largely unknown. In this issue, Krause et al (https://doi.org/10.1007/s00125-020-05212-6) analysed the epigenetic gene regulation of IRS2, which encodes a crucial mediator of insulin signal transduction, in liver biopsies of obese individuals with and without type 2 diabetes. They found that hepatic expression of IRS2 is decreased in type 2 diabetes, which is accompanied by decreased intronic DNA methylation and enhanced binding of two transcriptional repressors. They also report that the microRNA let-7e-5p is increased in the liver in diabetes, correlates with the decreased IRS2expression, and might represent a complementary mechanism of IRS2 regulation. The authors conclude that these findings contribute to an improved understanding of dysregulated pathways in the liver of individuals with type 2 diabetes and illustrate the complexity and multifactorial nature of mechanisms involved in the regulation of glucose homeostasis.

Type 1 diabetes in Africa: an immunogenetic study in the Amhara of North-West Ethiopia – published online 23/07/2020

Shitaye A. Balcha, Abayneh G. Demisse, Rajashree Mishra, Tanwi Vartak, Diana L. Cousminer, Kenyaita M. Hodge, Benjamin F. Voight, Kim Lorenz, Stanley Schwartz, Samuel T. Jerram, Arla Gamper, Alice Holmes, Hannah F. Wilson, Alistair J. K. Williams, Struan F. A. Grant, R. David Leslie, David I. W. Phillips, Elisabeth R. Trimble

From sub-Saharan Africa, a region of enormous genetic diversity, reports of insulin-dependent diabetes associated with both a low autoantibody prevalence and a low incidence in childhood have raised questions about its relationship to classic type 1 diabetes. In this issue, Balcha et al (https://doi.org/10.1007/s00125-020-05229-x) performed an immunogenetic study of insulin-dependent diabetes in individuals from the Amhara, the second-largest ethnic group in Ethiopia. The authors found that, although the genomes of the Amhara were distinct from European and other African genomes, individuals with insulin-dependent diabetes (89.4% born in rural areas) had the same principal HLA-DRB1 allele associations as cases of European-background type 1 diabetes. In contrast to previous reports, at diagnosis, the age-related total autoantibody prevalence was similar to that in many industrialised countries. However, the autoantibody profile was different; this was most marked in childhood cases, where the majority had a single autoantibody (to GAD), and the prevalence of autoantibodies to ZnT8 and IA-2 was very low. The authors conclude that these Ethiopian cases have the immunogenetic characteristics of autoimmune type 1 diabetes associated with an autoantibody profile that differs somewhat from cases of European background.

Using genetics to decipher the link between type 2 diabetes and cancer: shared aetiology or downstream consequence?- published online 23/07/2020

Emma E. Vincent, Hanieh Yaghootkar

The global prevalence of type 2 diabetes is estimated to reach over 500 million by 2030. To compound this health crisis, observational epidemiological studies have consistently reported that people with type 2 diabetes have a higher risk of certain types of cancer. To direct prevention and intervention strategies the association between the two disease states needs to be understood. In this issue, Vincent and Yaghootkar (https://doi.org/10.1007/s00125-020-05228-y) review how large-scale genome-wide association studies (GWAS) have been employed to investigate a possible relationship between type 2 diabetes and cancer. The evidence for shared genetic aetiology between alleles predisposing to type 2 diabetes and the observationally associated cancers is explored. The authors also discuss how GWAS and techniques such as Mendelian randomisation are used to investigate whether type 2 diabetes causes cancer or whether this association is driven by a particular metabolic feature, such as elevated insulin levels, or by an associated trait, such as obesity. Finally, the authors discuss areas for future study, including genetics studies of type 2 diabetes and cancer progression. The figure from this review is available as a downloadable slideset.

Real-world evidence: the devil is in the detail – published online 15/07/2020

Mugdha Gokhale, Til Stürmer, John B. Buse

The healthcare community is abuzz with discussions about real world evidence (RWE), which provides evidence regarding the utilisation and potential benefits and harms of healthcare interventions, based on data from routine clinical practice. While the reflection of diverse real-world patterns increases the attractiveness of RWE, it also increases the chance of several biases in real-world studies. In this issue (https://doi.org/10.1007/s00125-020-05217-1), Gokhale et al summarise key elements in RWE studies, including commonly encountered issues and methods to address these. While there is no one-size-fits-all solution to designing RWE studies, the authors explain that critical elements include a clear prespecified protocol with a well-defined research question, a fit-for-purpose data source, therapeutically equivalent treatments as comparators, robust state-of-the-art study design, analytical techniques to minimise biases, and clearly reported methods and results per published guidelines. The review also points to some newer areas of application of RWE that are relevant to diabetes research and beyond. The figures from this review are available as a downloadable slideset.

Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective study – published online 10/07/2020

Sufei Wang, Pei Ma, Shujing Zhang, Siwei Song, Zhihui Wang, Yanling Ma, Juanjuan Xu, Feng Wu, Limin Duan, Zhengrong Yin, Huilin Luo, Nian Xiong, Man Xu, Tianshu Zeng, Yang Jin

Diabetes is associated with an elevated risk of mortality in most infectious diseases. In this issue, Wang et al (https://doi.org/10.1007/s00125-020-05209-1) performed a retrospective study of the relationship between hyperglycaemia and 28-day mortality in coronavirus disease 2019 (COVID-19) patients not previously diagnosed with diabetes. They report that, of 605 COVID-19 patients at two hospitals based in Wuhan, China, 176 (29.1%) had hyperglycemia (≥7.0 mmol/l) at admission without a previous diagnosis of diabetes. These patients had more than twice the risk of death as those with normal blood glucose. Even patients with a CRB score (an effective measure for assessing the severity of pneumonia) that was low or zero were more likely to die if they had increased fasting blood glucose levels. The authors conclude that most COVID-19 patients are prone to glucose metabolic disorders, and that glycaemic testing and addressing elevations in fasting blood glucose at an early stage might help improve the overall outcomes.

A systematic review of trends in all-cause mortality among people with diabetes – published online 06/07/2020

Lei Chen, Rakibul M. Islam, Joanna Wang, Thomas R. Hird, Meda E. Pavkov, Edward W. Gregg, Agus Salim, Maryam Tabesh, Digsu N. Koye, Jessica L. Harding, Julian W. Sacre, Elizabeth L.M. Barr, Dianna J. Magliano, Jonathan E. Shaw

Some studies have reported falling mortality among populations with diabetes, but consistency of this trend among various populations with diabetes is unclear. In this issue, Chen and colleagues (https://doi.org/10.1007/s00125-020-05199-0) report a systematic review of 35 studies on the trends in all-cause mortality in people with diabetes from 1970 to 2016. They found that all-cause mortality has declined in nearly 80% of predominantly Europid populations with diabetes from 2000 to 2016. Furthermore, for nearly 60% of the populations, the reduction in mortality seen among those with diabetes was greater than or similar to the reductions observed in those without diabetes. However, there was under-representation of younger age groups and non-Europid populations in the published literature, and lack of mortality data from low- and middle-income countries. Thus, patterns of diabetes mortality remain uncertain in these populations. These findings highlight the significance of maintaining and improving cardiometabolic management in diabetes in order to achieve ongoing reductions in mortality in people with diabetes.

Leptin production capacity determines food intake and susceptibility to obesity-induced diabetes in Oikawa–Nagao Diabetes-Prone and Diabetes-Resistant mice – published online 19/06/2020

Akira Asai, Mototsugu Nagao, Koji Hayakawa, Teruo Miyazawa, Hitoshi Sugihara, Shinichi Oikawa

Even in the modern ‘obesogenic’ environment of plentiful food supply, not all people become obese by overeating. However, it remains poorly understood what determines individual differences in spontaneous meal size. In this issue, Asai and Nagao et al (https://doi.org/10.1007/s00125-020-05191-8) investigate the potential role of leptin production capacity in determining spontaneous meal size and consequent susceptibility to obesity-induced diabetes using selectively bred Oikawa–Nagao Diabetes-Prone (ON-DP) and Diabetes-Resistant (ON-DR) mice. The authors demonstrate that, prior to the development of obesity-induced diabetes, the spontaneously hyperphagic ON-DP mice had a lower circulating leptin level than the control ON-DR mice. ON-DP mice had a lower leptin production capacity in adipose tissue, probably because of the higher DNA methylation level in the Lep promoter region compared with that in ON-DR mice. The authors conclude that leptin production capacity, especially before the development of obesity, may have diagnostic potential for predicting individual risk of obesity and future onset of type 2 diabetes.

Live-born children after assisted reproduction in women with type 1 diabetes and type 2 diabetes: a nationwide cohort study – published online 16/06/2020

Michael Due Larsen, Dorte Møller Jensen, Jens Fedder, Line Riis Jølving, Bente Mertz Nørgård

Type 1 and type 2 diabetes are among the most common chronic diseases in women during the fertile years and previous studies have indicated that women with diabetes have difficulty conceiving compared with reference populations. However, the efficacy of assisted reproductive technology (ART) in women with diabetes has never been studied. In this issue, Larsen and colleagues (https://doi.org/10.1007/s00125-020-05193-6) report the results of a nationwide study of 594 women with either type 1 or type 2 diabetes in the Danish ART Registry, between 2006 and 2017. The authors found that women with type 2 diabetes have a decreased chance of live birth per embryo transfer compared with women without diabetes. Furthermore, the results suggested that the decrease is related to a lower chance of implantation of the embryo. Women with type 1 diabetes had an equivalent chance of a live birth per embryo transfer as women without diabetes. The findings in women with type 2 diabetes did not seem to be driven by obesity as the same pattern was seen in both normal-weight and obese women. The authors conclude that their findings should provide reassurance for women with type 1 diabetes considering ART treatment but that prospective studies need to be performed to confirm the findings for women with types 2 diabetes in other settings and to investigate the underlying mechanisms.

The health benefits of exercise in type 1 and type 2 diabetes

Cover of the exercise issue

The best-laid schemes o’ mice an’ men gang aft agley (To a Mouse, Robert Burns, 1785). We planned this series of mini-reviews in Diabetologia to coincide with the 2020 Olympic Games. Instead, I hope the articles will provide a timely stimulus to us all, to increase our activities again as we emerge from COVID-19 lockdown.

Regular exercise is known to improve insulin sensitivity and metabolic health in people with type 1 and type 2 diabetes, but how exactly does it do this and how should these individuals exercise? In this issue, we have commissioned a mini-series of reviews to try to answer these questions. Gemmink et al (https://doi.org/10.1007/s00125-020-05170-z) begin this series by providing a muscle-centred view on the beneficial impact of exercise on fat metabolism and, consequently, insulin sensitivity. The authors explain how regular exercise may alter lipid droplet characteristics in the human muscle (and liver) in insulin-resistant individuals, resulting in an ‘athlete-like’ phenotype that is associated with improved insulin sensitivity. Other than the muscle, the liver, adipose tissue, vasculature and pancreas also play a role in the beneficial effects of exercise. Thyfault and Bergouignan (https://doi.org/10.1007/s00125-020-05177-6) explain how exercise activates metabolic changes in these non-skeletal-muscle tissues and how the adaptations can protect against metabolic diseases. So, it is clear that exercise is beneficial for individuals with diabetes, but how in practice should exercise be carried out? In their review, Riddell and colleagues (https://doi.org/10.1007/s00125-020-05183-8) specifically focus on the competitive athlete with type 1 diabetes. They explain the challenges that athletes with type 1 diabetes face in trying to maintain normal glucose levels during training, travel and competition, and how these challenges may be overcome, such as with the use of insulin pumps and continuous glucose monitors. In addition, they discuss how adjustment of carbohydrate intake can improve performance in athletes with type 1 diabetes. Exercise training can also improve glycaemic control in individuals with type 2 diabetes, but it is not known which training regime is likely to elicit the most benefit with regards to this. In their review, Savikj and Zierath (https://doi.org/10.1007/s00125-020-05166-9) discuss how exercise type, intensity and modality affects the impact of exercise on glycaemic control in individuals with type 2 diabetes. They also discuss the impact of nutritional status on exercise-associated benefits, indicating that training with low carbohydrate availability may improve cardiorespiratory function and skeletal muscle oxidative capacity vs conventional training. They conclude that, just like competitive athletes, individuals with type 2 diabetes should be encouraged to adopt training regimens that improve fitness and metabolism.

The figures from these reviews are available as downloadable slidesets.

Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes – published online 05/06/2020

Kameron B. Rodrigues, Matthew J. Dufort, Alba Llibre, Cate Speake, M. Jubayer Rahman, Vincent Bondet, Juan Quiel, Peter S. Linsley, Carla J. Greenbaum, Darragh Duffy, Kristin V. Tarbell

Although type 1 IFN (IFN-1) has been implicated in the early stages of type 1 diabetes pathogenesis, less is known about key innate immune alterations in individuals with established type 1 diabetes. In this issue, Rodrigues, Dufort et al (https://doi.org/10.1007/s00125-020-05179-4)  report findings from their study, which used ex vivo whole blood immune stimulation to show that individuals with type 1 diabetes display higher IFN-1 responses after innate immune stimulation. Furthermore, they show that IFN-γ- and IL-1b-driven responses were not significantly different. Monocytes from NOD mouse models, a strain that develops autoimmune diabetes, also displayed increased IFN-1 responses after treatment with CpG, which stimulates the innate immune system. These findings indicate that increased responsiveness to IFN-1 is a feature of both mouse autoimmune diabetes and human established type 1 diabetes. The authors suggest that a stimulated IFN-1 gene signature could be used as a potential biomarker to identify individuals with type 1 diabetes who may be successfully treated with therapies targeting the IFN-1 pathway.

Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study – published online 29/05/2020

Bertrand Cariou, Samy Hadjadj, Matthieu Wargny, Matthieu Pichelin, Abdallah Al-Salameh, Ingrid Allix, Coralie Amadou, Gwénaëlle Arnault, Florence Baudoux, Bernard Bauduceau, Sophie Borot, Muriel Bourgeon-Ghittori, Olivier Bourron, David Boutoille, France Cazenave-Roblot, Claude Chaumeil, Emmanuel Cosson, Sandrine Coudol, Patrice Darmon, Emmanuel Disse, Amélie Ducet-Boiffard, Bénédicte Gaborit, Michael Joubert, Véronique Kerlan, Bruno Laviolle, Lucien Marchand, Laurent Meyer, Louis Potier, Gaëtan Prevost, Jean-Pierre Riveline, René Robert, Pierre-Jean Saulnier, Ariane Sultan, Jean-François Thébaut, Charles Thivolet, Blandine Tramunt, Camille Vatier, Ronan Roussel, Jean-François Gautier, Pierre Gourdy, for the CORONADO investigators

Diabetes has been shown to be a major comorbidity that affects the severity of Coronavirus disease-2019 (COVID-19). However, precise data regarding diabetes characteristics and their prognostic relevance in inpatients with COVID-19 are still lacking. In this issue, Cariou, Hadjadj, Wargny et al (https://doi.org/10.1007/s00125-020-05180-x) report the first results from the Coronavirus SARS-CoV-2 and Diabetes Outcomes (CORONADO) study, an observational, multicentric (68 centres), French nationwide study. With a prespecified design and protocol, the CORONADO study aims to explore the phenotypes of diabetic individuals with COVID-19. The authors found that patients with diabetes requiring hospital admission for COVID-19 were more likely to be elderly (mean age, 70 years; 38% ≥75 years old) and male (65%), and more commonly had type 2 (90%) than type 1 diabetes (3%). One in ten patients (10.3%) died by day 7 following hospital admission; age and advanced diabetic complications were independently associated with mortality on day 7 of admission. Thus, people with this profile should follow all rules to avoid infection with severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2). In addition, severe forms of COVID-19 were associated with macrovascular complications, as indicated previously, and also microvascular complications, as established for the first time by this study. Long-term glycaemic control (HbA1c) showed no obvious association with prognosis; however, increased BMI appeared to be an independent prognostic factor for COVID-19 severity and, hence, the authors suggest that individuals with a high BMI require special attention.

Complex interaction of fasting glucose, body mass index, age and sex on all-cause mortality: a cohort study in 15 million Korean adults – published online 19/05/2020

Mi-Hyang Jung, Sang-Wook Yi, Sang Joon An, Beverley Balkau, Jee-Jeon Yi, Hyeongsu Kim

Lean diabetes (diabetes in people with a low BMI [<25 kg/m2]) is emerging as a pathological condition that is associated with a higher mortality risk than excessive weight or grade I obese diabetes. However, it is not clear whether low BMI and hyperglycaemia have a joint effect on mortality and whether combined associations of fasting glucose levels and BMI with mortality differ by age and sex. In this issue, Jung et al (https://doi.org/10.1007/s00125-020-05160-1) use a Korean cohort study to report that: (1) the adverse effects of hyperglycaemia on mortality risk are more marked in leaner than more overweight individuals, particularly in young men and middle-aged women; and (2) the interpretation of mortality risk associated with fasting blood glucose–BMI subgroups is not straightforward because of complex interactions between fasting glucose, BMI, age and sex. For example, people with a fasting glucose level of 6.1–6.9 mmol/l and a lower normal weight (BMI 20–22.4 kg/m2) had similar or higher mortality risk than people with a fasting glucose level of 7.0–9.9 mmol/l and BMI ≥22.5 kg/m2, while obese people with diabetes had higher mortality risk than overweight people with diabetes. The authors state that this study calls for sophisticated management of patients according to the detailed metabolic profiles of each individual, including fasting glucose and BMI, as well as sex and age, to achieve better health outcomes.

Islet pericytes convert into profibrotic myofibroblasts in a mouse model of islet vascular fibrosis – published online 18/05/2020

Luciana Mateus Gonçalves, Elizabeth Pereira, João Pedro Werneck de Castro, Ernesto Bernal-Mizrachi, Joana Almaça

Vascular fibrosis is a very common lesion in islets from individuals with type 2 diabetes but its aetiology has not yet been determined. Until now, mouse models that enable us to study the role of dysfunctional islet microvasculature in diabetes pathogenesis have not been available. In this issue, Mateus Gonçalves et al (https://doi.org/10.1007/s00125-020-05168-7) report that a transgenic mouse model of beta cell expansion (the AktTg mouse) exhibits an increased deposition of extracellular matrix proteins around islet blood vessels, allowing for the study of cellular mechanisms that lead to islet vascular fibrosis and its functional consequences. They found that islet pericytes proliferated extensively in this model and were converted into profibrotic myofibroblasts. Vascular alterations were associated with diminished islet blood perfusion and impaired islet vascular responses to noradrenaline and glucose, which led to a decrease in glucose-stimulated insulin secretion per beta cell unit in these transgenic mice. The authors conclude that the AktTg mouse model can now be used to conduct studies aimed at elucidating the role of insulin or other beta cell secretory products in determining the number, phenotype and function of islet pericytes. They state that elucidating the crosstalk between pericytes and beta cells is necessary to fully understand the pathogenesis of islet adaptation in diabetes.

Sex-specific associations of insulin resistance with chronic kidney disease and kidney function: a bi-directional Mendelian randomisation study – published online 15/05/2020

Jie V. Zhao, C. Mary Schooling

Chronic kidney disease (CKD) contributes substantially to the global burden of morbidity and mortality. Notably, CKD has a sexual disparity that is not fully understood. To provide further insight, in this issue Zhao and Schooling (https://doi.org/10.1007/s00125-020-05163-y) contextualise these differences within evolutionary biology theory, which suggests a sex-specific growth and reproduction trade-off against longevity. As such, insulin, a key driver of this trade-off, may have different roles in men and women. Given fasting insulin, fasting glucose and HbA1c are related, the authors used the novel Mendelian randomisation-Bayesian model-averaging (MR-BMA) method to identify the best-fitting model and most influential exposure, followed by univariable or multivariable Mendelian randomisation, as appropriate. Fasting insulin was selected as the most likely exposure by both overall and sex-specific MR-BMA. Genetically predicted insulin was associated with CKD and unfavourable kidney function in men but not women. The authors suggest that clarifying the underlying pathways by which insulin has these sex-specific renal effects could provide new insights for prevention and treatment strategies for CKD.

Decreased pancreatic acinar cell number in type 1 diabetes – published online 09/05/2020

Fig from Wright paper

Jordan J. Wright, Diane C. Saunders, Chunhua Dai, Greg Poffenberger, Brynn Cairns, David V. Serreze, David M. Harlan, Rita Bottino, Marcela Brissova, Alvin C. Powers

Individuals with type 1 diabetes have a reduced total pancreas size; however, the cellular and tissue changes responsible for this size reduction are not well characterised. In this issue, Wright et al (https://doi.org/10.1007/s00125-020-05155-y) report that  pancreases from donors with type 1 diabetes were approximately 45% smaller than those from non-diabetic donors. They also had fewer total acinar cells and, as expected, a lower beta cell mass. Acinar cell size was similar between pancreases from diabetic and non-diabetic donors, regardless of location within pancreatic lobes or proximity to islets. Compared with non-diabetic donors, pancreases from donors with type 1 diabetes also had increased fibrosis. Based on the analysis of size and cell composition of pancreases from donors with a wide range of type 1 diabetes duration, the authors speculate that the decline in acinar cell number begins very early in disease progression and that type 1 diabetes pathogenesis involves both the exocrine and endocrine compartments of the pancreas.

Insulin sensitivity depends on the route of glucose administration – published online 08/05/2020

Graphical abstract for Mingrone

Geltrude Mingrone, Simona Panunzi, Andrea De Gaetano, Sofie Ahlin, Valerio Spuntarelli, Isabel Bondia-Pons, Chiara Barbieri, Esmeralda Capristo, Amalia Gastaldelli, John J Nolan

Bariatric surgery results in a rapid improvement in insulin resistance long before weight loss, focusing attention on the role of the small intestine in insulin resistance. In this issue, Mingrone et al (https://doi.org/10.1007/s00125-020-05157-w) compared glucose metabolism in obese participants who were administered oral glucose and, after 7–10 days, i.v. glucose (plasma glucose during i.v. administration was matched to plasma glucose during oral challenge). They also analysed the differences in insulin effect on proteolysis, ketogenesis and lipolysis. The authors found that the oral route led to increased insulin secretion and a complementary 40% reduction in glucose clearance, as compared with the i.v. route. The efficacy of insulin to reduce lipolysis and proteolysis also decreased after oral glucose administration. The authors suggest that an unknown mechanism, triggered by the presence of glucose in the intestinal lumen, counterbalances the effect of incretins (gut hormones that stimulate insulin secretion) by limiting the effect of insulin that has been released in response to glucose. They conclude that these findings indicate that insulin sensitivity depends on the route of glucose administration and that (as yet unknown) intestinal factors are crucial to these underlying metabolic processes.

The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice – published online 29/04/2020

Fig from Georgiadou paper

Eleni Georgiadou, Elizabeth Haythorne, Matthew T. Dickerson, Livia Lopez-Noriega, Timothy J. Pullen, Gabriela da Silva Xavier, Samuel P. X. Davis, Aida Martinez-Sanchez, Francesca Semplici, Rosario Rizzuto, James A. McGinty, Paul M. French, Matthew C. Cane, David A. Jacobson, Isabelle Leclerc, Guy A. Rutter

Impaired Ca2+ signalling in the pancreatic beta cell contributes to deficiencies in insulin secretion in type 2 diabetes. Intramitochondrial oxidative metabolism is thought to be stimulated by increases in cytosolic Ca2+; the mitochondrial uniporter (MCU) complex and its associated regulatory proteins are proposed to be the main driving force of Ca2+ entry into mitochondria. In this issue, Georgiadou et al (https://doi.org/10.1007/s00125-020-05148-x) tested this hypothesis by selectively eliminating Mcu expression in the beta cells of mice. Mitochondrial Ca2+ uptake, ATP production, and insulin secretion in response to glucose stimulation were all substantially impaired, in vitro, in the absence of Mcu. However, the in vivo phenotype of mice lacking Mcu was more complex, with glucose-stimulated insulin release varying depending on test conditions (e.g. time after glucose injection, method of glucose administration and age of animals). The authors conclude that these findings suggest that altered mitochondrial Ca2+ uptake may contribute to defective insulin secretion in some forms of diabetes, and highlight MCU as a potential therapeutic target.

Obesity, unfavourable lifestyle and genetic risk of type 2 diabetes: a case-cohort study – published online 15/04/2020

Theresia M. Schnurr, Hermina Jakupović, Germán D. Carrasquilla, Lars Ängquist, Niels Grarup, Thorkild I. A. Sørensen, Anne Tjønneland, Kim Overvad, Oluf Pedersen, Torben Hansen, Tuomas O. Kilpeläinen

Type 2 diabetes is a common disease with a rapidly increasing global prevalence that has been largely attributed to the ongoing pandemic of obesity and a sedentary lifestyle. However, it is unclear whether the effects of obesity and unfavourable lifestyle on diabetes risk may vary depending on genetic variation. In this issue, Schnurr, Jakupović et al (https://doi.org/10.1007/s00125-020-05140-5) investigated whether the associations of obesity and unfavourable lifestyle with increased risk of type 2 diabetes are accentuated by genetic predisposition. Analysing data from 4729 individuals who developed incident type 2 diabetes and a randomly selected cohort sample of 5402 individuals, the authors found that obesity and unfavourable lifestyle are associated with increased diabetes risk irrespective of genetic predisposition. The authors conclude that weight management by healthy lifestyle should be recommended as a prevention strategy for type 2 diabetes, regardless of genetic predisposition.

Why are South Asians prone to type 2 diabetes? A hypothesis based on underexplored pathways – published online 31/03/2020

K. M. Venkat Narayan, Alka M. Kanaya

People of South Asian ancestry, who total nearly 2 billion worldwide, are at heightened risk of type 2 diabetes, even at low body weights. Challenging the idea that this high risk for type 2 diabetes is primarily due to the population’s susceptibility to adiposity-driven insulin resistance, Narayan and Kanaya (https://doi.org/10.1007/s00125-020-05132-5) offer a novel hypothesis using data on underexplored pathways. Based on evidence from evolutionary biology and recent epidemiological data, the authors state that, compared with other ethnic groups, South Asians have evolutionarily acquired impaired insulin secretion resulting from compromised beta cell function, as well as impaired insulin action due to low lean-muscle mass.  These features lower the population’s metabolic capacity, and the reduced insulin action is further accentuated by increased fat deposition in the liver and muscle in response to lifestyle factors. Thus, the authors conclude that investigating the reasons for impaired insulin secretion in South Asians, and approaches to improve beta cell insulin secretion, insulin action in the muscle and hepatic fat deposition, are warranted. They suggest that lessons learnt from studying South Asians may be generalisable to other populations residing in or originating from low- and middle-income countries. The figure from this review is available as a downloadable slide.

Diabetes through a 3D lens: organoid models – published online 27/03/2020

Anastasia Tsakmaki, Patricia Fonseca Pedro, Gavin A. Bewick

Disease modelling is a cornerstone of translational medicine and drug discovery. However, meeting future healthcare challenges will require models that more accurately mimic disease pathology. Organoid technology, developed over the last decade, has enabled the long-term culture of stem cell-derived 3D tissue cultures that closely mirror their tissue of origin. Organoids have increased fidelity compared with traditional tissue culture methods and present a tantalising opportunity to supercharge our understanding of disease. In this issue, Tsakmaki et al (https://doi.org/10.1007/s00125-020-05126-3) review organoid technology and discuss the opportunities these mini organs have to offer researchers in the diabetes field. The authors provide a brief overview of the development of organoids from tissues important for glucose homeostasis and those associated with diabetic complications and discuss how they could be utilised. Organoid technology is likely to facilitate a greater understanding of the pathophysiology of diabetes at the cellular and tissue levels and aid the identification of novel pathways for drug development. The figures from this review are available as a downloadable slideset.

One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension – published online 17/03/2020

Lena Bilet, Esther Phielix, Tineke van de Weijer, Anne Gemmink, Madeleen Bosma, Esther Moonen-Kornips, Johanna A. Jorgensen, Gert Schaart, Dongyan Zhang, Kenneth Meijer, Maria Hopman, Matthijs K. C. Hesselink, D. Margriet Ouwens, Gerald I. Shulman, Vera B. Schrauwen-Hinderling, Patrick Schrauwen

Physical inactivity is suggested to lead to insulin resistance. An imbalance between skeletal muscle fat accumulation and a low mitochondrial oxidative capacity could determine the development of insulin resistance. However, direct evidence for the role of low mitochondrial function in insulin resistance in humans is lacking. In this issue, Bilet et al (https://doi.org/10.1007/s00125-020-05128-1) investigated whether inactivity-mediated lowering of mitochondrial oxidative capacity affects intramyocellular lipid (IMCL) content and skeletal muscle insulin signalling upon lipid infusion in humans. They report that  the lowering of skeletal muscle mitochondrial function by one-legged immobilisation resulted in IMCL accumulation. In addition, the inactivated leg became more prone to lipid-induced insulin resistance via the activation of protein kinase C θ (PKCθ), as compared with the active leg. The authors conclude that these results illustrate the importance of mitochondrial function in the development of insulin resistance in humans and that lipid-induced insulin resistance occurs via the activation of PKCθ. They suggest that these findings stress the importance of physical activity in the prevention of diabetes.

Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis – published online 15/03/2020

Pia Leete, Richard A. Oram, Timothy J. McDonald, Beverley M. Shields, Clemens Ziller, TIGI study team, Andrew T. Hattersley, Sarah J. Richardson, Noel G. Morgan

The aetiology of type 1 diabetes has been difficult to explore in the pancreas due to the limited availability of suitable specimens for study. In this issue, Leete et al (https://doi.org/10.1007/s00125-020-05115-6) employed the world’s largest collections of pancreas samples recovered from young people with recent-onset type 1 diabetes to demonstrate that abnormalities in insulin processing occurred at high frequency in the beta cells of the youngest donors (those diagnosed at <7 years of age) but were much less evident in those who were older at diabetes onset (≥13 years of age). These differences correlated with previously defined immune phenotypes found in the islets of people of equivalent ages. Importantly, among children in the intermediate age range (7–12 years), abnormalities in insulin processing also correlated closely with islet immune phenotype. These histological differences were mirrored by proinsulin:C-peptide ratio in the blood. From these findings, the authors suggest that type 1 diabetes exists as two mechanistically distinct endotypes, which they coin ‘type 1 diabetes endotype 1 (T1DE1)’ and ‘type 1 diabetes endotype 2 (T1DE2)’. They conclude that stratification of children and young people according to endotype will be important in the effective design of future immunotherapeutic trials in type 1 diabetes.

Impact of glucose on risk of dementia: Mendelian randomisation studies in 115,875 individuals – published online 14/03/2020

Marianne Benn, Børge G. Nordestgaard, Anne Tybjærg-Hansen, Ruth Frikke-Schmidt

Observational studies have reported an increased risk of dementia in individuals with diabetes mellitus, but it is not known whether high plasma glucose has a causal impact on risk of dementia. In this issue, Benn et al (https://doi.org/10.1007/s00125-020-05124-5) used Mendelian randomisation with data from 115,875 individuals from the Danish general population to examine this. The authors found that a 1 mmol/l higher plasma glucose level was associated with a 2.4-fold higher risk of unspecified dementia, but did not increase the risk of Alzheimer’s disease or vascular dementia. The authors state that the finding that high plasma glucose is causally related to the risk of unspecified dementia underscores the importance of glycaemic control in individuals with diabetes mellitus and, potentially, also in those with impaired glucose tolerance.

Extracellular HMGB1 exacerbates autoimmune progression and recurrence of type 1 diabetes by impairing regulatory T cell stability (19/02/2020)

Jing Zhang, Longmin Chen, Faxi Wang, Yuan Zou, Jingyi Li, Jiahui Luo, Faheem Khan, Fei Sun, Yang Li, Jing Liu, Zhishui Chen, Shu Zhang, Fei Xiong, Qilin Yu, Jinxiu Li, Kun Huang, Bao-Ling Adam, Zhiguang Zhou, Decio L. Eizirik, Ping Yang, Cong-Yi Wang

Although extracellular high-mobility group box 1 (HMGB1), an evolutionarily conserved chromosomal protein, contributes to the pathogenesis of autoimmune diabetes, its impact on the initiation and progression of type 1 diabetes and the underlying mechanisms largely remain to be elucidated. In this issue, Zhang, Chen, et al (https://doi.org/10.1007/s00125-020-05105-8) report that blockade of HMGB1 not only attenuated autoimmune initiation and progression, but also reversed diabetes in a NOD mouse model of new-onset diabetes. Neutralising HMGB1 also prevented islet isografts from recurrent autoimmune attack. Using a Foxp3 lineage tracing model, the authors found that HMGB1 impairs regulatory T cell (Treg) stability and function via altered receptor for AGE (RAGE) and toll-like receptor 4 (TLR4) activation, leading to enhanced phosphatidylinositol 3-kinase (PI3K)–Akt– mechanistic target of rapamycin (mTOR) signalling.  In addition, higher circulating HMGB1 in individuals with type 1 diabetes was noted, which contributed to the impaired Treg stability. According to the authors, their data suggest that HMGB1 could be a viable target for the prevention and treatment of type 1 diabetes in a clinical setting.

Neuronal control of peripheral nutrient partitioning – published online 07/02/2020

Figure from Manceau et al.

Romane Manceau, Danie Majeur, Thierry Alquier

In addition to food intake and body weight regulation, it has become clear that specific brain regions and neurocircuits orchestrate the metabolic fate of nutrients in peripheral tissues in rodents and humans. Increasing evidence suggests that alterations in these processes can contribute to the development of obesity and diabetes. In this issue, Manceau et al (https://doi.org/10.1007/s00125-020-05104-9) review historical evidence and recent studies demonstrating that specific neuronal populations of the hypothalamus regulate the utilisation, storage and conversion of nutrients (referred to as nutrient partitioning) in peripheral tissues via the autonomic nervous system. In addition, this review summarises the molecular and biochemical mechanisms involved in regulation of peripheral nutrient partitioning by hypothalamic cells. Finally, the authors discuss the contribution of impaired neuronal control of nutrient partitioning to metabolic pathologies in humans. The figures from this review are available as a downloadable slideset

Neurocognitive impairment in type 2 diabetes: evidence for shared genetic aetiology (published online 04/02/2020)

Josephine Mollon, Joanne E. Curran, Samuel R. Mathias, Emma E. M. Knowles, Phoebe Carlisle, Peter T. Fox, Rene L. Olvera, Harald H. H. Göring, Amanda Rodrigue, Laura Almasy, Ravi Duggirala, John Blangero, David C. Glahn

Type 2 diabetes is associated with cognitive impairment, but it is unclear whether common genetic factors influence both type 2 diabetes risk and cognitive impairment. In this issue, using two quantitative methods for genetic analysis, Mollon et al (https://doi.org/10.1007/s00125-020-05101-y) found evidence for pleiotropy between type 2 diabetes and cognitive impairment. Using one approach, negative genetic correlations between type 2 diabetes and performance in measures of attention, working memory and face memory suggested genetic overlap between type 2 diabetes risk and poor performance in these cognitive domains. Similar results were obtained using the second approach, such that performance in these cognitive domains was lowest in individuals with type 2 diabetes, highest in individuals who were unaffected/unrelated to an affected individual and intermediate in those related to an individual with type 2 diabetes. The authors conclude that these findings suggest that cognitive impairment is genetically related to type 2 diabetes and may, therefore, be useful in elucidating the biological underpinnings of this disease.

Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation – published online 01/02/2020

Zhang figure

Fang Fang Zhang, Yu Hong Liu, Dan Wei Wang, Ting Sheng Liu, Yue Yang, Jia Min Guo, Yi Pan, Yan Feng Zhang, Hong Du, Ling Li, Liang Jin

Abnormal expression of long non-coding RNAs (lncRNAs) has been associated with a variety of human diseases, including diabetes. However, it is unclear whether islet lncRNAs are involved in obesity-mediated beta cell dysfunction, which is associated with diabetes. In this issue, Zhang et al (https://doi.org/10.1007/s00125-020-05090-y) report that obesity reduces the expression of the lncRNA 1810019D21Rik (referred to as regulator of insulin transcription [ROIT]), as assessed by RNA sequencing analysis. They also show that over-expression of ROIT lncRNA leads to improved glucose homeostasis and insulin transcription. The authors suggest that this may be because ROIT lncRNA can downregulate the methylation of the Nkx6.1 promoter by binding to DNA methyltransferase 3a and causing its degradation. The authors conclude that these findings indicate that at least some of the harmful effects of obesity on beta cell function may be mediated by obesity-induced alterations in the level of the ROIT lncRNA.

Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality: a prospective study (23/01/2020)

Amra Jujić, Naeimeh Atabaki-Pasdar, Peter M. Nilsson, Peter Almgren, Liisa Hakaste, Tiinamaija Tuomi, Lisa M. Berglund, Paul W. Franks, Jens J. Holst, Rashmi B. Prasad, Signe S. Torekov, Susana Ravassa, Javier Díez, Margaretha Persson, Olle Melander, Maria F. Gomez, Leif Groop, Emma Ahlqvist, Martin Magnusson

Glucagon-like peptide 1 (GLP-1) analogue therapy has proven to be beneficial for cardiovascular protection. On the contrary, evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) have untoward effects on cardiovascular biology has recently emerged. In this issue, Jujić et al (https://doi.org/10.1007/s00125-020-05093-9) report that, in two prospective, community-based studies, elevated levels of fasting GIP were associated with greater risk of cardiovascular disease-associated and total mortality within 5–9 years of follow-up. Further, Mendelian randomisation analyses provided novel evidence of the involvement of GIP in coronary artery disease and myocardial infarction. The authors suggest osteopontin to be the mediator of the possible detrimental cardiovascular effects of GIP, and call for a more thorough investigation of the potential risks associated with pharmacological stimulation of the GIP pathway.

Diabetic neuropathy: what does the future hold? (published online 23/01/2020)

Brian C. Callaghan, Gary Gallagher, Vera Fridman, Eva L. Feldman

New treatments for diabetic neuropathy are needed since glycaemic control is not the complete answer. In this issue, Callaghan et al (https://doi.org/10.1007/s00125-020-05085-9) discuss recent evidence, which points to new metabolic risk factors for diabetic neuropathy, and novel disease-modifying strategies. Specifically, obesity is an important metabolic risk factor for neuropathy, and this may have treatment ramifications. Diet and exercise have emerged as promising interventions, but future studies are needed to determine their effects on neuropathy outcomes. In addition, dyslipidaemia and altered sphingolipid metabolism are potential mechanisms for nerve injury; it is suggested that a better understanding of these could provide hope for new targeted therapies. Regarding diagnostic testing, Callaghan et al state that the evaluation of neuropathy requires a good clinical history, neurological examination and a few simple blood tests. In their review, they also discuss painful diabetic neuropathy, outlining guidelines that propose that this condition should be treated with tricyclic antidepressants, serotonin-reuptake inhibitors and gabapentinoids. However, opioids should be avoided since data supporting long term opioid use for painful diabetic neuropathy are lacking and data supporting the downsides of these medications are mounting quickly. The authors conclude that there is a clear need for new medications and other interventions for the treatment of painful diabetic neuropathy.

The figure from this review is available as a downloadable slide.

An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models – published online 10/01/2020

Choi figure

Min Jeong Choi, Saet-Byel Jung, Seong Eun Lee, Seul Gi Kang, Ju Hee Lee, Min Jeong Ryu, Hyo Kyun Chung, Joon Young Chang, Yong Kyung Kim, Hyun Jung Hong, Hail Kim, Hyun Jin Kim, Chul-Ho Lee, Adil Mardinoglu, Hyon-Seung Yi, Minho Shong

Adipose tissue mitochondrial oxidative phosphorylation is critical for systemic energy homeostasis, and its dysfunction has been suggested in the aetiology of insulin resistance and diabetes. To date, there is limited experimental evidence on the systemic effects of mitochondrial oxidative phosphorylation on glucose and energy homeostasis. In this issue, Choi et al (https://doi.org/10.1007/s00125-019-05082-7) report that knockout of the gene encoding mitochondrial large ribosomal subunit protein (CRIF1) paradoxically improves systemic energy homeostasis via cell-autonomous activation of the mitochondrial unfolded protein response, and via the non-cell-autonomous mitokine actions of growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21). The authors state that these findings suggest that mitokines and their receptor modulators may be potential targets for the treatment of obesity and metabolic disease.

Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes – published online 08/01/2020

Figure from Mason paper

Ivy C. Mason, Jingyi Qian, Gail K. Adler, Frank A. J. L. Scheer

In this issue, Mason et al (https://doi.org/10.1007/s00125-019-05059-6) provide an overview of the influence of the endogenous circadian system and its disruption on glucose control in healthy individuals and individuals with type 2 diabetes. The circadian system, a multi-oscillator system composed of the suprachiasmatic nucleus and peripheral clocks, generates endogenous 24 h rhythms in physiological functions and biological processes. The authors explain that, in healthy individuals, circadian rhythms in glucose control have been well established. However, while diurnal rhythms of glucose control in individuals with type 2 diabetes are well documented under regular sleep cycles, future studies are required to determine endogenous circadian contributions in this population. Furthermore, disruption of circadian organisation results in dysglycaemia, with converging evidence derived from epidemiological, genetic and experimental studies, although experimental and longer-term randomised controlled trials in individuals with type 2 diabetes are lacking. According to the authors, the available evidence indicates that, in healthy individuals and in those with type 2 diabetes, glycaemic control may be improved by appropriately aligning endogenous, environmental and behavioural rhythms. The figures from this review are available as a downloadable slideset.

Persistent poor glycaemic control in individuals with type 2 diabetes in developing countries: 12 years of real-world evidence of the International Diabetes Management Practices Study (IDMPS) – published online 04/01/2020

Aschner figure

Pablo Aschner, Juan J. Gagliardino, Hasan Ilkova, Fernando Lavalle, Ambady Ramachandran, Jean Claude Mbanya, Marina Shestakova, Jean-Marc Chantelot, Juliana C. N. Chan

Management of type 2 diabetes has advanced considerably over the past decade, but there are limited data from developing countries. The International Diabetes Management Practices Study (IDMPS) is an ongoing, international, observational study that documents current practices in diabetes management in developing countries. In this issue, Aschner et al (https://doi.org/10.1007/s00125-019-05078-3) report that data from across seven cross-sectional ‘waves’, from 2005 to 2017 (including >65,000 people with type 2 diabetes), indicate that HbA1c target attainment in these countries remains poor and has, in fact, decreased significantly over time; this is despite increased use of insulin and a higher proportion of patients undergoing frequent HbA1c measurements. While receipt of diabetes education increased over time, this was predominantly provided only by physicians. In summary, the authors state that, while some encouraging trends in care improvements were observed, system changes are needed to improve access to structured education, self-monitoring tools and appropriate medications. They propose that such changes will support self-management and enable care providers to intensify treatment as recommended in guidelines.

The changing face of paediatric diabetes – published online 02/01/2020

Shah figure

Amy S. Shah, Kristen J. Nadeau

Paediatric diabetes is on the rise. In the last decade there has been extensive research dedicated to understanding its pathophysiology and its associated comorbidities and complications. In this issue, Shah and Nadeau (https://doi.org/10.1007/s00125-019-05075-6) summarise the current state of knowledge of type 1 and type 2 diabetes in children and adolescents. They review the current epidemiology and address the importance of differentiating between the two main types of diabetes, especially in the setting of obesity. The authors go on to  discuss the observed comorbidities and complications in type 1 and type 2 diabetes in youth, pointing out that abnormalities in heart physiology, blood dynamics and renal hyperfiltration are more common in individuals with either type of diabetes than in peers without diabetes. Finally, currently available treatments and novel treatments on the horizon are discussed.  The figure from this review is available as a downloadable slide.

2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) – published online 19/12/2018

Image from Buse paper

John B. Buse, Deborah J. Wexler, Apostolos Tsapas, Peter Rossing, Geltrude Mingrone, Chantal Mathieu, David A. D’Alessio, Melanie J. Davies

In 2018, the ADA/EASD published a consensus report for the management of hyperglycaemia in type 2 diabetes (https://link.springer.com/article/10.1007/s00125-018-4729-5). Patient-centred care that was focused on reducing the burden of complications represented a paradigm shift in the approach to diabetes management, with the preferred use of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) and sodium–glucose cotransporter 2 (SGLT2) inhibitors in those with established atherosclerotic cardiovascular disease (ASCVD). Since then, there has been an unprecedented release of new outcome data, mandating a brief update to the 2018 consensus. In this issue, the ADA/EASD (https://doi.org/10.1007/s00125-019-05039-w) present important changes to the 2018 consensus, including consideration of GLP-1 RAs and SGLT2 inhibitors for beneficial cardiorenal outcomes in individuals with type 2 diabetes, independently of HbA1c levels. Where major adverse cardiovascular events are the gravest threat, the evidence favours the preferred use of GLP-1 RAs; as well as being used in those with type 2 diabetes and established ASCVD, their use should be considered in those with specific indicators of high cardiovascular risk. When it comes to the use of SGLT-2 inhibitors in type 2 diabetes, the evidence is now much clearer for their benefit, particularly in those with heart failure with reduced ejection fraction and in those with chronic kidney disease (CKD), and in the prevention of CKD progression. Thus, SGLT-2 inhibitors are preferred for diabetes management in individuals with these comorbidities.

Geospatial mapping and data linkage uncovers variability in outcomes of foot disease according to multiple deprivation: a population cohort study of people with diabetes – published online 17/12/2019

Figure from Hurst paper

Joanne E. Hurst, Ruth Barn, Lesley Gibson, Hamish Innes, Sicco A. Bus, Brian Kennon, David Wylie, James Woodburn

Social deprivation is a reported risk factor for foot ulceration, lower extremity amputation and subsequent mortality in people with diabetes. However, it is unclear if the prevalence of these outcomes is random or forms patterns according to the geographical distribution of social deprivation. In this issue, Hurst et al (https://doi.org/10.1007/s00125-019-05056-9) report the use of routinely collected health data, its linkage, and visualisation of foot outcomes by deprivation status over the large health administrative area of National Health Service (NHS) Greater Glasgow and Clyde. The authors report that foot ulceration, amputation and subsequent mortality are highly prevalent in areas with the worst social deprivation, with distinct geographical near-neighbour clustering of areas with similar characteristics. Conversely, low prevalence is associated with areas of relatively low deprivation, confirming stark inequalities across the health board. They suggest that this technique of geospatial mapping can inform health service redesign by targeting resources at identified hot spot regions, potentially improving outcomes and reducing inequalities.

Predicting renal disease progression in a large contemporary cohort with type 1 diabetes mellitus – published online 05/12/2019

Figure from Colombo paper

Marco Colombo, Stuart J. McGurnaghan, Samira Bell, Finlay MacKenzie, Alan W. Patrick, John R. Petrie, John A. McKnight, Sandra MacRury, Jamie Traynor, Wendy Metcalfe, Paul M. McKeigue, Helen M. Colhoun, on behalf of the Scottish Diabetes Research Network (SDRN) Type 1 Bioresource Investigators and the Scottish Renal Registry

Kidney disease is a major cause of loss of quality and length of life in type 1 diabetes. Improvements in diabetes care should be reducing this complication but there are few large incidence studies in type 1 diabetes to confirm whether this is the case. Furthermore, we know that some people seem to be more susceptible to this complication than others but how to predict those most at risk is unclear. Accordingly, in this issue, Colombo et al (https://doi.org/10.1007/s00125-019-05052-z) quantified the extent to which kidney disease occurs in a large nationally representative cohort of people with type 1 diabetes and attempted to maximise prediction of kidney disease progression. The authors found that current rates of kidney disease are much lower than in historical reports and that the majority of people with type 1 diabetes have fairly stable kidney function. However, there remains a small proportion who develop this complication quickly, as well as having more cardiovascular and retinal disease, and the early identification of these individuals is challenging.

Preterm birth and risk of type 1 and type 2 diabetes: a national cohort study – published online 05/12/2019

Figure from Crump paper

Casey Crump, Jan Sundquist, Kristina Sundquist

Preterm birth has previously been associated with insulin resistance early in life. However, no large cohort studies have examined preterm birth in relation to both type 1 and type 2 diabetes from childhood into adulthood. In a national cohort of over 4 million people, Crump et al (https://doi.org/10.1007/s00125-019-05044-z) found that preterm birth was linked with higher risks of both type 1 and type 2 diabetes from childhood into early- to mid-adulthood. An analysis of siblings further suggested that these findings were only partially explained by shared genetic or environmental factors in families. Instead, preterm birth and its treatment may have direct effects on later development of diabetes. The authors conclude that preterm birth should be recognised as a chronic condition that predisposes individuals to diabetes across the life course. Children and adults born prematurely may need early preventive evaluation and long-term monitoring for timely detection and treatment of diabetes.

Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity -published online 03/12/2019

Fig from Oshima paper

Masaya Oshima, Séverine Pechberty, Lara Bellini, Sven O. Göpel, Mélanie Campana, Claude Rouch, Julien Dairou, Cristina Cosentino, Federica Fantuzzi, Sanna Toivonen, Piero Marchetti, Christophe Magnan, Miriam Cnop, Hervé Le Stunff, Raphaël Scharfmann 

Rodent beta cells are highly sensitive to treatment with saturated NEFA, leading to their impairment and death. However, translating data from rodent to human beta cells remains challenging. Previous data indicate that treatment of a recently engineered functional beta cell line, EndoC-βH1, with palmitate does not induce lipotoxicity under standard culture conditions. In this issue, Oshima et al (https://doi.org/10.1007/s00125-019-05046-x) report that, upon stearoyl CoA desaturase (SCD) knockdown, EndoC-βH1 cells are sensitive to lipotoxicity and that they dedifferentiate. Treatment with long chain saturated NEFA exacerbates dedifferentiation and induces markers of inflammation and endoplasmic reticulum stress. The authors suggest that characterising the factors that govern SCD activity may lead to new approaches to overcome pancreatic beta cell dedifferentiation, dysfunction and apoptosis during type 2 diabetes.

Streamlined mail-based methods for large randomised trials: lessons learnt from the ASCEND study (published online 30/11/2019)

Marion M. Mafham, Louise J. Bowman, Richard J. Haynes, Jane M. Armitage

Randomised trials have become so costly and complex to conduct that many important research questions go unanswered. Novel streamlined methodologies, including the use of registry trials, have been proposed. In this issue, Mafham et al (https://doi.org/10.1007/s00125-019-05049-8) outline the lessons learned from A Study of Cardiovascular Events iN Diabetes (ASCEND), a large mail-based trial of aspirin and of n-3 fatty acid supplementation for the primary prevention of serious vascular events in people with diabetes. The authors describe how this trial obtained reliable randomised evidence at a fraction of the cost of traditional clinic-based trials, and how insights from its design and conduct will inform future studies. They also consider the limitations of the study and how these could be circumvented in future studies. The authors conclude that similar approaches should be adopted by other researchers in order to answer important clinical questions that are relevant to improving health.

Sex differences in metabolic regulation and diabetes susceptibility – published online 21/11/2019

Figure from Tramunt paper

Blandine Tramunt, Sarra Smati, Naia Grandgeorge, Françoise Lenfant, Jean-François Arnal, Alexandra Montagner, Pierre Gourdy

Understanding sex differences has recently emerged as a priority for research in numerous medical areas, including metabolic diseases. In this issue, Tramunt et al (https://doi.org/10.1007/s00125-019-05040-3) review how many aspects of energy balance and glucose metabolism are differently regulated in men and women, influencing their predisposition to type 2 diabetes. Insulin sensitivity and beta cell function are better in premenopausal women vs age-matched men, and this review details the clinical and experimental observations that have recently provided important new insights into the role of sex steroids, especially oestrogens, in these sex disparities. The contribution of additional mechanisms, including the role of sex chromosomes and epigenetic modifications, is also discussed; the authors advise that these require further attention. They conclude that, overall, evidence of sex-related differences in metabolic regulation and diabetes pathogenesis highlights the need to promote sex-based strategies for the prevention and treatment of type 2 diabetes. The figures from this review are available as a downloadable slideset.

Activation of the HIF1α/PFKFB3 stress response pathway in beta cells in type 1 diabetes – published online 13/11/2019

Fig from Nomoto paper

Hiroshi Nomoto, Lina Pei, Chiara Montemurro, Madeline Rosenberger, Allison Furterer, Giovanni Coppola, Brian Nadel, Matteo Pellegrini, Tatyana Gurlo, Peter C. Butler, Slavica Tudzarova

Prospective studies of individuals at high risk of type 1 diabetes established that the interval between initiation of beta cell autoimmunity and diabetes onset can be up to 10 years. In this issue, Nomoto, Pei and colleagues (https://doi.org/10.1007/s00125-019-05030-5) investigated whether activation of the hypoxia inducible factor 1 α (HIF1α) signalling pathway plays a role in this prolonged prediabetes phase. Evaluation of residual beta cells from individuals with recent-onset and pre-type 1 diabetes revealed activation of a highly conserved pro-survival injury response program initiated by HIF1α, as recently also shown in beta cells in type 2 diabetes. According to the authors, the unexplained slow rate of beta cell attrition but early attenuation of glucose-induced insulin secretion in evolving type 1 diabetes is likely to be due, at least in part, to activation of pro-survival signalling pathways at the expense of beta cell function. They conclude that, since HIF1α signalling has an impact on multiple cell functions, observable changes in beta cells in type 1 and type 2 diabetes may be protective rather than mediating cell toxicity, implying that caution should be used when selecting potential therapeutic targets.

An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study – published online 12/11/2019

Bryan M. Williams, Davide Borroni, Rongjun Liu, Yitian Zhao, Jiong Zhang, Jonathan Lim, Baikai Ma, Vito Romano, Hong Qi, Maryam Ferdousi, Ioannis N. Petropoulos, Georgios Ponirakis, Stephen Kaye, Rayaz A. Malik, Uazman Alam, Yalin Zheng

Diabetic neuropathy is the strongest initiating risk factor for foot ulceration and amputations. Current ‘screening’ practices are highly subjective and only diagnose diabetic neuropathy when well-established, which is in stark contrast to the tools available for the early diagnosis of other diabetic complications, such as retinopathy. Future development of valid screening programmes utilising technology that detects early neuropathy is, therefore, of paramount importance and clinical need. In this issue, Williams et al (https://doi.org/10.1007/s00125-019-05023-4) present an artificial intelligence-based algorithm that accurately and rapidly detects diabetic neuropathy through non-invasive assessment of the corneal sub-basal nerve plexus using corneal confocal microscopy. They show that this approach outperforms the currently used automated software, with superior intraclass correlation coefficients for all major corneal nerve biomarkers. The authors conclude that these findings indicate that corneal confocal microscopy is now primed for population-based screening of diabetic neuropathy.

Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality – published online 11/11/2019

Martijn C. G. J. Brouwers, Nynke Simons, Coen D. A. Stehouwer, Aaron Isaacs

Non-alcoholic fatty liver disease (NAFLD) has emerged as a risk factor for type 2 diabetes and cardiovascular disease (CVD). In this issue, Brouwers and colleagues (https://doi.org/10.1007/s00125-019-05024-3) elaborate on potential mediators of the relationship between NAFLD and CVD, such as plasma lipids, low-grade inflammation, impaired fibrinolysis and hepatokines. By summarising recent advances in genetic studies that focused on the relationship between NAFLD susceptibility genes (PNPLA3, TM6SF2, GCKR and MBOAT7) and CVD, it appears that plasma lipids are an important mediator of that relationship. This has therapeutic implications, particularly for the design of anti-NAFLD drugs that affect lipid metabolism. Since these agents are aimed primarily at preventing end-stage liver disease, it is important to underscore the fact that the principal cause of death in individuals with NAFLD is CVD. The figures from this review are available as a downloadable slideset.

Positioning time in range in diabetes management – published online 07/11/2019

Fig from Advani paper

Andrew Advani

The time in range (TIR) metric has emerged as being a key indicator of the quality of glucose control in diabetes. In this issue, Andrew Advani (https://doi.org/10.1007/s00125-019-05027-0) summarises recent TIR research with the aim of assisting healthcare professionals and individuals living with diabetes in interpreting TIR data and setting TIR goals. Evidence is beginning to emerge linking reduced TIR with increased risk of long-term diabetes complications and adverse pregnancy outcomes. This association may be expected given the inverse correlation between TIR and HbA1c levels. The author explains that, because of the skewed distribution of glucose levels outside the target range, TIR (on its own) is a poor indicator of the frequency and severity of hypoglycaemia. Thus, all TIR discussions should separately consider time below range and, by inference, time above range. In this review, the recent consensus recommendations for time in ranges goals are summarised, although, as is always the case, glycaemic targets should be individualised. The figures from this review are available as a downloadable slideset.

Extracellular vesicles in metabolic disease – published online 05/11/2019

Fig from Akbar paper

Naveed Akbar, Valerio Azzimato, Robin P. Choudhury, Myriam Aouadi

Extracellular vesicles (EVs) are considered promising candidates for the diagnosis and treatment of metabolic diseases. EVs are membrane-enclosed lipid spheres that serve as messengers by transporting lipids, proteins, RNA and/or DNA from the parent cell of origin to other cells. EVs present a potential major advantage over current blood-borne diagnostic markers as they can provide new functional insights into the cells and tissues implicated in metabolic disease. Recent discoveries in clinical cohorts and animal models has led to a blossoming of publications, implicating EVs in the biology and development of metabolic diseases. In this this issue, Akbar et al (https://doi.org/10.1007/s00125-019-05014-5) discuss the role of platelet, endothelial, adipocyte, immune cell and gut-microbiome EVs in metabolic dysfunction, focusing on EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes. They also explore potential issues associated with translating early biomarker discoveries into therapeutic targets. The figures from this review are available as a downloadable slideset.

Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans – published online 17/10/2019

Fig from Bensallem paper

Mohammed Bensellam, Yan-Chuan Shi, Jeng Yie Chan, D. Ross Laybutt, Heeyoung Chae, Michel Abou-Samra, Evan G. Pappas, Helen E. Thomas, Patrick Gilon, Jean-Christophe Jonas

The mechanisms of beta cell adaptation to insulin resistance in obesity and of beta cell failure in type 2 diabetes are poorly defined. Several metallothionein genes are upregulated in islets from type 2 diabetic donors, but their role in beta cells is unclear. In this issue, Bensellam et al (https://doi.org/10.1007/s00125-019-05008-3) report that beta cell compensation in murine models of obesity correlates with downregulation of islet metallothionein 1 (Mt1) and Mt2 gene expression, while beta cell failure correlates with their upregulation. They also confirm that MT1X expression is upregulated in islets isolated from type 2 diabetic donors. Combining in vivo, ex vivo and in vitro complementary approaches, the authors demonstrate that Mt1 inhibition enhances glucose-stimulated insulin secretion and improves glucose tolerance, whereas its overexpression attenuates the secretory response. They conclude that MT1 negatively regulates beta cell function and propose that MT1 inhibition may represent a potential strategy to enhance insulin secretion in (pre)diabetes.

Epigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction – published online 17/10/2019

Fig from Elliot paper

Hannah R. Elliott, Gemma C. Sharp, Caroline L. Relton, Deborah A. Lawlor

Gestational diabetes (GDM) increases the risk of adverse perinatal outcomes and is associated with future offspring risk of obesity and type 2 diabetes. Epigenetic mechanisms have been hypothesised to mediate an effect of GDM on offspring adiposity and type 2 diabetes and therefore could provide a modifiable mechanism to reduce type 2 diabetes in future generations. Epigenetic mechanisms have also been proposed as useful clinical biomarkers for predicting future adverse outcomes, irrespective of their causal role in disease. In this issue, Elliott, Sharp et al (https://doi.org/10.1007/s00125-019-05011-8) summarise recent advances in the epigenetic epidemiology of GDM. They identify a nascent research area that is likely to benefit from triangulation of different methods for exploring causal effects of epigenetic mechanisms on disease. They also identify the need to determine the value of epigenetic markers measured in samples collected in early pregnancy as accurate predictors of GDM and associated adverse outcomes. The figures from this review are available as a downloadable slideset.

Proinsulin peptide promotes autoimmune diabetes in a novel HLA-DR3-DQ2-transgenic murine model of spontaneous disease – published online 14/10/2019

Fig from Verhagen paper

Johan Verhagen, Norkhairin Yusuf, Emma L. Smith, Emily M. Whettlock, Kerina Naran, Sefina Arif, Mark Peakman

The HLA-DR3-DQ2 haplotype represents a major risk factor for the development of type 1 diabetes. However, it is not fully established which antigen presented on these HLA molecules is important in disease development. In this issue, Verhagen and colleagues (https://doi.org/10.1007/s00125-019-04994-8) report a novel two-stage in vivo approach to identify these antigens. The authors first generated a new transgenic mouse model expressing HLA-DR3-DQ2 and found a high rate of spontaneous autoimmune diabetes. They then used adjuvanted priming with candidate antigens to demonstrate that only proinsulin is capable of further accelerating diabetes development. Moreover, this diabetogenicity maps to a 15-mer residue, with its core MHC-binding region in the N-terminal of C-peptide, which was not previously known to be disease relevant. The authors suggest that the identification of diabetogenic peptides in this way will provide new insights into the role of HLA in diabetes development, which could be relevant to human studies and therapies.

Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts – published online 04/10/2019

Fig from Ahola-Olli paper

Ari V. Ahola-Olli, Linda Mustelin, Maria Kalimeri, Johannes Kettunen, Jari Jokelainen, Juha Auvinen, Katri Puukka, Aki S. Havulinna, Terho Lehtimäki, Mika Kähönen, Markus Juonala, Sirkka Keinänen-Kiukaanniemi, Veikko Salomaa, Markus Perola, Marjo-Riitta Järvelin, Mika Ala-Korpela, Olli Raitakari, Peter Würtz

Increased risk for type 2 diabetes is consistently associated with widespread metabolic aberrations in young adults from multiple cohorts with a mean age of 31–36 years at baseline. Among the strongest predictors of incident type 2 diabetes are circulating branched-chain amino acids, VLDL-particle measures and enrichment of triacylglycerol in all lipoprotein subclasses. Previous animal studies and Mendelian randomisation studies performed in humans have suggested causal relationships between increased concentrations of branched-chain amino acids and type 2 diabetes. In this issue, Ahola-Olli et al (https://doi.org/10.1007/s00125-019-05001-w) used NMR metabolomics to quantify 229 circulating metabolic measures in individuals from four Finnish observational cohorts (n=11,896; baseline age 24–45 years) and tested associations with risk of developing diabetes, fasting glucose, 2 h glucose and HOMA-IR at follow-up (range 8–15 years). The authors explain that their results extend previously detected epidemiological associations (in middle-aged and older individuals) to young adults and demonstrate that branched-chain amino acids can predict the development of type 2 diabetes up to 15 years prior to disease onset. By summarising the information from multiple metabolic measures, the authors were able to derive and validate a multi-metabolite score identifying a subgroup of patients with a greatly increased risk for type 2 diabetes after adjusting for BMI and fasting glucose (OR 10.1 for individuals in upper vs lower fifth of the multi-metabolite score). They conclude that comprehensive metabolic profiling may eventually help target interventions for young people at increased risk for developing type 2 diabetes.

Incidence and prevalence of type 2 diabetes by occupation: results from all Swedish employees – published online 17/09/2019

Fig from Carlsson paper

Sofia Carlsson, Tomas Andersson, Mats Talbäck, Maria Feychting

While previous studies have shown that diabetes risk increases with lower socioeconomic status, little research exists on occupation and risk of type 2 diabetes. In this issue, Carlsson et al (https://doi.org/10.1007/s00125-019-04997-5) investigated the incidence and prevalence of type 2 diabetes across all occupational groups in Sweden. The association between occupation and type 2 diabetes coincided with vast differences in prevalence of lifestyle factors, far greater than any analyses of socioeconomic groups have revealed: drivers, factory workers and cleaners were three times more likely to develop type 2 diabetes than teachers and physiotherapists. Individuals in occupations associated with a high risk of diabetes were more likely to be overweight, smoke and have lower physical fitness than those in low-risk occupations. The differences were apparent from a young age, even at the time of entering the work force, among men. The authors conclude that if workplace interventions could target unhealthy lifestyle factors among employees in these occupations, major health gains may be made.

Phenotypic alterations in pancreatic lymph node stromal cells from human donors with type 1 diabetes and NOD mice – published online 05/09/2019

Image from Postigo-Fernandez paper

Jorge Postigo-Fernandez, Donna L. Farber, Rémi J. Creusot

Type 1 diabetes, like many other autoimmune disorders, results, in part, from a failure to maintain peripheral tolerance. This failure is often associated with defects in professional antigen-presenting cells (APCs) (i.e. dendritic cells), which lose their tolerogenic potential, driving inflammatory responses. However, other, less well-known APCs (lymph node stromal cells) are particularly interesting because of their inherent capacity to induce self-tolerance. In this issue, Postigo-Fernandez et al (https://doi.org/10.1007/s00125-019-04984-w) study these cell populations in the context of autoimmune diabetes. Data collected from multiple human pancreatic lymph nodes reveal alterations in the relative frequency of these stromal cells, as well as an increase in their expression of MHC-II and programmed death-ligand 1 (PD-L1). These changes correlate with increased expression of a number of tolerance-related genes in human type 1 diabetes donors. The authors conclude that these unexpected findings could pave the way to immunotherapies targeting these cells to help re-establish peripheral tolerance.

Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies – published online 04/09/2019

Fig from Zhang paper

Yanbo Zhang, Xiong-Fei Pan, Junxiang Chen, Lu Xia, Anlan Cao, Yuge Zhang, Jing Wang, Huiqi Li, Kun Yang, Kunquan Guo, Meian He, An Pan

Maintaining a healthy body weight and diet, keeping physically active, and avoiding smoking and heavy drinking have been reported to be associated with a lower risk of type 2 diabetes and with a lower risk of mortality and cardiovascular disease among individuals with diabetes. However, no study has systematically summarised the current evidence, and variability existed across studies. In this issue, Zhang et al (https://doi.org/10.1007/s00125-019-04985-9) report the results of a meta-analysis of prospective cohort studies investigating the relationship of combined lifestyle factors with incident type 2 diabetes and with mortality and morbidity in individuals with type 2 diabetes. Individuals with the healthiest lifestyle according to different lifestyle factors had a 75% lower risk of incident type 2 diabetes than those with the least-healthy lifestyle. Furthermore, among individuals with diabetes, adopting the healthiest lifestyle was associated with risk reductions of 31–56% for total and cause-specific deaths and incident cardiovascular disease. According to the authors, these findings indicate that promotion of comprehensive healthy lifestyle factors should be a public health priority for all countries.

 

A life course perspective on diabetes: developmental origins and beyond – published online 27/08/2019

Cover of Developmental Origins issue

This issue features a special series of reviews on different aspects of diabetes throughout the life course. Jonathan Wells (https://doi.org/10.1007/s00125-019-4944-8) begins the series by considering diabetes risk from an evolutionary perspective to explain how adverse environments can increase diabetes risk and that this risk can be passed on to subsequent generations. Next, Golden et al (https://doi.org/10.1007/s00125-019-4968-0) summarise racial/ethnic differences in the frequencies of type 2 diabetes across the life course, while Huebschmann et al (https://doi.org/10.1007/s00125-019-4939-5) discuss the physiological and behavioural mechanisms that may underlie variations between the sexes with respect to diabetes prevalence and cardiovascular risk over a life time. The next two reviews by Stein et al (https://doi.org/10.1007/s00125-019-4930-1) and Perng et al (https://doi.org/10.1007/s00125-019-4914-1) focus on developmental under- and overnutrition, respectively, and obesity/diabetes risk. Fernandez-Twinn et al (https://doi.org/10.1007/s00125-019-4951-9) look at how in utero exposures lead to the ‘developmental programming’ of offspring obesity and diabetes in later life via a variety of mechanisms, including epigenetics, while Sharp and Lawlor (https://doi.org/10.1007/s00125-019-4919-9) discuss how fathers might influence the development of obesity and diabetes in their offspring.

Besides maternal nutrition, another in utero exposure that has been linked to offspring obesity and diabetes in later life is exposure to environmental toxicants. In their review, Sargis and Simmons (https://doi.org/10.1007/s00125-019-4940-z) discuss how endocrine-disrupting chemicals in the environment have been implicated in diabetes pathogenesis throughout the life course.

With regard to type 1 diabetes, Craig et al (https://doi.org/10.1007/s00125-019-4942-x) look at how early life exposures contribute to type 1 diabetes risk. In terms of potential treatments for diabetes, Palmer et al (https://doi.org/10.1007/s00125-019-4934-x) explore the biological links between ageing and diabetes, with a specific focus on cellular senescence. We conclude with a review by Timpel et al (https://doi.org/10.1007/s00125-019-4941-y) discussing what governments should be doing. The reviews are accompanied by an editorial (https://doi.org/10.1007/s00125-019-4954-6).

Persistent effects of in utero overnutrition on offspring adiposity: the Exploring Perinatal Outcomes among Children (EPOCH) study – published online 23/08/2019

Christine W. Hockett, Kylie K. Harrall, Brianna F. Moore, Anne P. Starling, Anna Bellatorre, Katherine A. Sauder, Wei Perng, Ann Scherzinger, Kavita Garg, Brandy M. Ringham, Deborah H. Glueck, Dana Dabelea

Previous studies have shown that exposure to gestational diabetes mellitus (GDM) in utero is associated with increased levels of adiposity in the offspring. However, few studies have investigated the effects of intrauterine GDM exposure on fat patterning and distribution in offspring, specifically over time, while they are transitioning through puberty. In this issue, Hockett et al (https://doi.org/10.1007/s00125-019-04981-z) report that, on average, offspring exposed to GDM in utero have higher levels of adiposity compared with offspring not exposed to GDM, and that the magnitude of these differences do not change over time. They state that these findings provide evidence that the effects of fetal overnutrition on offspring adiposity are established early in life, likely before puberty, and track throughout adolescence. The authors suggest that efforts to prevent childhood obesity should focus on the pre-conception and prenatal periods of life.

What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? – published online 23/08/2019

Fig from Williams paper

Claire L. Williams, Anna E. Long

 Zinc transporter 8 (ZnT8) is a major target of humoral immunity in pancreatic beta cells. Autoantibodies to ZnT8 help to define risk of type 1 diabetes accurately, particularly after childhood. In this issue, Williams and Long (https://doi.org/10.1007/s00125-019-04975-x) summarise the lessons learnt from research into this islet antigen and highlight important questions that remain to be answered. They explain that antibody recognition of ZnT8 is influenced by a non-synonymous single nucleotide polymorphism, uniquely providing evidence of true autoimmunity. Why the immune system reacts to this protein in type 1 diabetes is still unclear. ZnT8 responses appear later in the autoimmune process leading to diabetes and often are lost rapidly after diagnosis. The authors discuss how the development of novel assays to measure ZnT8 autoantibodies will provide quicker and cheaper methods of detection and may uncover additional important epitopes for antibody binding. They state that this should reveal improved biomarkers of disease and will aid our understanding of the role of ZnT8 autoimmunity in type 1 diabetes. The figures from this review are available as a downloadable slideset.

Lipid metabolic signalling networks in pancreatic beta cell function – published online 19/08/2019

Figure from Prentki paper

Marc Prentki, Barbara E. Corkey, S. R. Murthy Madiraju

Insulin secretion in response to nutrients and hormones is regulated by multiple metabolic signals originating either within the beta cell or exogenously. Despite significant advances in the understanding of the insulin secretion process per se, the different signalling pathways and the metabolite signals involved are not fully understood. Furthermore, the intricate mechanisms that govern insulin granule exocytosis and secretion, and the complexities inherent to the methodologies employed, have given rise to results that are often not uniform and that are influenced by the system studied and conditions employed. Glucose-stimulated insulin secretion is known to be amplified by lipid signalling, though the precise mechanisms and the lipid molecules involved remain a matter of discussion. In this issue, Prentki et al (https://doi.org/10.1007/s00125-019-04976-w) review the current knowledge about the importance of the acetyl-CoA carboxylase/malonyl-CoA/carnitine palmitoyltransferase-1 axis and the glycerolipid/NEFA cycle as the members of the lipid signalling network with key roles controlling insulin secretion in the beta cell. The figures from this review are available as a downloadable slideset.

Cognitive dysfunction in diabetes: how to implement emerging guidelines – published online 16/08/2019

Geert J. Biessels, Rachel A. Whitmer

Individuals with diabetes are at increased risk of cognitive impairment and this has consequences for aspects of their daily life, diabetes treatment and prognosis. Recent diabetes guidelines, therefore, recommend routine screening for cognitive impairment, particularly in older individuals with diabetes. However, this is not yet common practice. In this issue, Biessels and Whitmer (https://doi.org/10.1007/s00125-019-04977-9) review cognitive impairment in individuals with diabetes, including its clinical features at different stages of cognitive dysfunction and its impact on those affected. They address the emerging guidelines and pinpoint issues that will need to be resolved to effectively put this guidance into practice to optimise individualised care for people with diabetes and cognitive impairment.

The role of GIP and pancreatic GLP-1 in the glucoregulatory effect of DPP-4 inhibition in mice – published online 14/08/2019

Fig from Hutch paper

Chelsea R. Hutch, Karen Roelofs, April Haller, Joyce Sorrell, Kyle Leix, David D. D’Alessio, Robert Augustin, Randy J. Seeley, Thomas Klein, Darleen A. Sandoval

Several effective glucoregulatory pharmaceuticals target incretin peptides, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). One such class of pharmaceuticals prolongs the half-life of these peptides by inhibiting the degradation enzyme, dipeptidyl peptidase-4 (DPP-4). It is commonly thought that the intestinal source of GLP-1 is responsible for improved glucose homeostasis by DPP-4 inhibitors. In this issue, Hutch et al (https://doi.org/10.1007/s00125-019-4963-5) studied transgenic mouse models in which GLP-1 is solely expressed in the pancreas or the intestine. Their findings indicate that pancreatic GLP-1 contributes to the effectiveness of DDP-4 inhibitors. In addition, in a mouse model with no GLP-1 production, DPP-4 inhibitors retained a full glucoregulatory effect through the actions of GIP. The authors conclude that these findings suggest that increases in pancreatic GLP-1 and GIP are necessary for the full effect of DPP-4 inhibitors on glucose tolerance in mice.

VEGF-A and blood vessels: a beta cell perspective – published online 14/08/2019

Fig from Staels paper

Willem Staels, Yves Heremans, Harry Heimberg, Nico De Leu

In recent years, studies in transgenic mice have been particularly informative with regard to the crosstalk between endothelial cells and beta cells in beta cell development, physiology and disease. In this issue, Staels et al (https://doi.org/10.1007/s00125-019-4969-z) summarise current knowledge on these complex interactions, with special emphasis on the role of vascular endothelial growth factor-A (VEGF-A). They discuss the involvement of vascular changes in the pathogenesis of type 1 and type 2 diabetes. In addition, the authors explain how impaired revascularisation of islets transplanted in individuals with type 1 diabetes is linked to islet graft failure and graft loss, and outline preclinical strategies used to improve the rate of revascularisation. Finally, the authors highlight how the vasculature could provide an opportunity for the development of new diabetes therapies. The figure from this review is available as a downloadable slide.

High maternal early-pregnancy blood glucose levels are associated with altered fetal growth and increased risk of adverse birth outcomes – published online 08/08/2019

Fig from Geurtsen paper

Madelon L. Geurtsen, Eef E. L. van Soest, Ellis Voerman, Eric A. P. Steegers, Vincent W. V. Jaddoe, Romy Gaillard

Gestational diabetes mellitus (GDM) is a major risk factor for perinatal complications. Recent studies suggest that, in mid- and late pregnancy, high maternal glucose levels below the threshold of GDM are associated with increased risks of adverse birth outcomes. In this issue, Geurtsen et al (https://doi.org/10.1007/s00125-019-4957-3) performed a population-based prospective cohort study of 6116 pregnant women to investigate the direct effects of impaired maternal glucose metabolism from early pregnancy onwards on fetal growth throughout pregnancy and on adverse birth outcomes. They report that higher maternal non-fasting glucose levels in early pregnancy are associated with altered fetal growth patterns, characterised by decreased fetal growth rates in mid-pregnancy and increased fetal growth rates from late pregnancy onwards, leading to an increased risk of delivering a large-for-gestational-age infant. The authors suggest that these findings indicate that instead of targeting maternal glucose metabolism in the second half of pregnancy, as is current clinical practice, future preventive strategies need to focus on screening for impaired maternal glucose metabolism from preconception and early pregnancy onwards. In addition, there is a need for intervention programmes to improve fetal growth and birth outcomes.

Factors associated with stillbirth in women with diabetes – published online 29/07/2019

Fig from Mackin paper

Sharon T. Mackin, Scott M. Nelson, Sarah H. Wild, Helen M. Colhoun, Rachael Wood, Robert S. Lindsay, on behalf of the SDRN Epidemiology Group and Scottish Diabetes Group Pregnancy subgroup

Stillbirth rates are up to fivefold higher in mothers with diabetes compared with those without. Identification of at-risk pregnancies is challenging for clinical teams. In this issue, Mackin et al (https://doi.org/10.1007/s00125-019-4943-9) explored Scottish obstetric data to better identify the risk profile of affected pregnancies in women with type 1 and type 2 diabetes. In type 1, higher glycaemia throughout pregnancy was linked with stillbirth, whilst in type 2, higher pregestational glycaemia and maternal BMI had the strongest association, highlighting the importance of preconceptual preparation. Stillbirth risk was increased at the extremes of birthweight and, whilst the majority of stillbirths occurred preterm (under 37 weeks), one-third occurred at term. The authors conclude that more accurate prediction of pregnancies at risk of stillbirth is urgently needed.

The effect of mid-life insulin resistance and type 2 diabetes on older-age cognitive state: the explanatory role of early-life advantage – published online 29/07/2019

Fig from James paper

Sarah-Naomi James, Andrew Wong, Therese Tillin, Rebecca Hardy, Nishi Chaturvedi, Marcus Richards

Type 2 diabetes, hyperglycaemia and insulin resistance are considered risk factors for cognitive impairment. In this issue, James et al (https://doi.org/10.1007/s00125-019-4949-3) analysed data from the National Survey for Health and Development, a birth cohort established in 1946, to show that childhood advantage (childhood cognitive ability, socioeconomic status and education) drives this association, by separately benefitting older-age insulin resistance and cognition. They found no direct connection between the latter two variables. The authors used an alternative genetic approach, a polygenic risk score for insulin resistance, to confirm the lack of association with cognition. The authors conclude that these findings suggest that glucose-lowering agents are unlikely to have a beneficial impact on cognitive decline and dementia, and that strategies to improve childhood circumstances may be better placed to impact both later life diabetes and cognitive impairment risk.

New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism – published online 25/07/2019

Figure from Eid paper

Stephanie Eid, Kelli M. Sas, Steven F. Abcouwer, Eva L. Feldman, Thomas W. Gardner, Subramaniam Pennathur, Patrice E. Fort

The mechanisms driving the onset and progression of diabetic complications have been extensively studied individually, but the commonalities and specificities between them have received very little attention. The review by Eid et al (https://doi.org/10.1007/s00125-019-4959-1) in this issue specifically discusses omics-based studies of microvascular complications in both the experimental and clinical settings. The authors place a special emphasis on the emerging role of lipids and lipid metabolism as a central mechanism underlying diabetic complications. The omics-based non-targeted analyses of tissues from diabetic individuals and preclinical models following interventions have been key in reshaping our understanding of the pathophysiological mechanisms involved in microvascular complications, forming new hypotheses for therapeutic leads. The figures from this review are available as a downloadable slideset.

Clinical aspects of heart failure in individuals with diabetes – published online 24/07/2019

Figure from Bowes paper

Christa D. Bowes, Lillian F. Lien, Javed Butler

Cardiovascular outcome (CVO) trials with novel glucose-lowering therapies have provided us with a deeper understanding of the risks and benefits of these agents with respect to cardiovascular outcomes. In turn, CVO trials have allowed individualisation of therapy for patients with diabetes. Since individuals with diabetes are at a higher risk of developing heart failure (HF) and, subsequent to HF development, have much worse prognosis, it is important to consider the issues concerning HF risk and management in these individuals. In this issue, Bowes et al (https://doi.org/10.1007/s00125-019-4958-2) summarise available data on the impact of various glucose-lowering therapies on the risks of developing HF and their role in the prevention of incident HF.  They state that these data will provide clinicians with further insights to help optimise the management of patients with diabetes with and without HF. The figure from this review is available as a downloadable slide.

Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes – published online 20/07/2019

Fig from Hogenboom paper

Rick Hogenboom, Martin J. Kalsbeek, Nikita L. Korpel, Paul de Goede, Marit Koenen, Ruud M. Buijs, Johannes A. Romijn, Dick F. Swaab, Andries Kalsbeek, Chun-Xia Yi

The molecular clock is disturbed in peripheral tissues of individuals with type 2 diabetes. However, it is not known whether the brain master clock in the hypothalamic suprachiasmatic nucleus is also affected. In this issue, Hogenboom, Kalsbeek et al (https://doi.org/10.1007/s00125-019-4953-7) report data obtained from a unique collection of post-mortem human brain tissue donated for research by individuals with and without type 2 diabetes. Compared with non-diabetic donors, in donors with type 2 diabetes they found a loss of key neuropeptides and decreased numbers of the neuron-supporting astroglial cells that are of utmost importance for proper functioning of the neuronal clock network. According to the authors, the data suggest that disturbances in the daily physiology of people with type 2 diabetes, such as an irregular sleep/wake cycle and dysregulated glucose metabolism, may be due to impaired functioning of the central master clock. They, therefore, propose that, in addition to glucose-lowering medication, normalisation of circadian rhythms by behavioural and/or pharmacological interventions might be helpful to treat type 2 diabetes more effectively.

Does diabetes prevention translate into reduced long-term vascular complications of diabetes? – published online 04/07/2019

Figure from Nathan review

David M. Nathan, Peter H. Bennett, Jill P. Crandall, Sharon L. Edelstein, Ronald B. Goldberg, Steven E. Kahn, William C. Knowler, Kieren J. Mather, Sunder Mudaliar, Trevor J. Orchard, Marinella Temprosa, Neil H. White and the DPP Research Group

Numerous trials have demonstrated the ability to prevent or delay the development of type 2 diabetes. Whether these efforts also reduce the long-term microvascular and cardiovascular complications that usually accompany diabetes is not as clear. In this issue, Nathan et al and the Diabetes Prevention Program (DPP) Research Group (which includes investigators of the long-term follow-up DPP Outcomes Study) (https://doi.org/10.1007/s00125-019-4928-8) review the major studies that have examined this question. One study with very long follow-up (20–30 years) suggests that complications can be reduced, but confirmation through further long-term follow-up of prevention studies is necessary. The authors conclude that the reduction of complications is a critical public health issue when considering the worth of diabetes prevention strategies. The figure from this review is available as a downloadable slide.

Myokines in metabolic homeostasis and diabetes – published online 01/07/2019

Figure from Eckel paper

Jürgen Eckel

Physical activity triggers the release of a host of myokines, a group of molecules that integrate contracting muscle into the complex network of organ communication, consisting of metabolites, exosomes and many other crosstalk signals. In this issue, Jürgen Eckel (https://doi.org/10.1007/s00125-019-4927-9) reviews how myokines, as part of the organ crosstalk network, serve to communicate immediate and long-term information for functional adjustments in different tissues, with a significant role in positive metabolic control. In humans, the functional allocation of myokines has remained rather limited. Eckel suggests that future studies are needed to address the specific role of myokines in concert with other crosstalk molecules in humans, and the auto- and paracrine actions of these molecules. This may provide new insight into muscle physiology, as well as indicating myokines with therapeutic potential in diabetes. The figure from this review is available as a downloadable slide.

Oestrogen receptor β mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells – published online 27/06/2019

Fig from Martinez-Pinna paper

Juan Martinez-Pinna, Laura Marroqui, Abdelkrim Hmadcha, Javier Lopez-Beas, Sergi Soriano, Sabrina Villar-Pazos, Paloma Alonso-Magdalena, Reinaldo S. Dos Santos, Ivan Quesada, Franz Martin, Bernat Soria, Jan-Åke Gustafsson, Angel Nadal

Bisphenol-A (BPA) is an endocrine-disrupting chemical (EDC) found in many widely used products. BPA was detected in the urine of 93% of US citizens and its concentration in serum reaches between 1 and 25 nmol/l. Epidemiological studies have associated EDC exposure with type 2 diabetes in humans. BPA increases insulin levels and release in the presence of stimulatory glucose concentrations. In this issue, Martinez-Pinna, Marroqui et al (https://doi.org/10.1007/s00125-019-4925-y) report that BPA, at environmentally relevant doses, modulates the expression of more than 50 genes encoding Na+ and K+ ion channel subunits in mouse beta cells. BPA treatment resulted in decreased Na+ and K+ currents in islets, as well as modifying glucose-induced electrical activity. Using beta cells from oestrogen receptor β (Erβ) knockout mice, the authors demonstrated that the BPA-induced effects in pancreatic islets were dependent on oestrogen receptor β. They suggest that these results help to explain how BPA regulates insulin content and release and shed light upon the mechanisms by which EDCs with oestrogenic activity exert their diabetogenic activity.

Augmented insulin secretory response in early pregnancy – published online 09/06/2019

Figure from Powe Upfront

Camille E. Powe, Larraine P. Huston Presley, Joseph J. Locascio, Patrick M. Catalano

Augmentation of insulin secretory response in pregnancy has been attributed to a pregnancy-associated reduction in insulin sensitivity. In this issue, findings reported by Powe et al (https://doi.org/10.1007/s00125-019-4881-6) challenge this widely held theory. The authors conducted a longitudinal study of 34 pregnant women using well-validated methods for assessing insulin sensitivity (euglycaemic clamp) and insulin secretory response (IVGTT). Assessments were conducted prior to pregnancy, in early pregnancy and in late pregnancy. The authors found that the insulin secretory response increased markedly in early pregnancy, and that this occurred prior to and independent of the decrement in insulin sensitivity in late pregnancy. The authors conclude that elucidation of the mediators of the pregnancy-associated augmentation in insulin secretory response could potentially identify targets for the development of therapeutic agents for use in diabetes.

Marked improvement in HbA1c following commencement of flash glucose monitoring in people with type 1 diabetes – published online 09/06/2019

Figure for Tyndall Upfront

Victoria Tyndall, Roland H. Stimson, Nicola N. Zammitt, Stuart A. Ritchie, John A. McKnight, Anna R. Dover, Fraser W. Gibb

Flash glucose monitoring is known to reduce hypoglycaemia events but little evidence supports its efficacy in reducing HbA1c in type 1 diabetes. In this issue, Tyndall and Stimson et al (https://doi.org/10.1007/s00125-019-4894-1) prospectively assessed the effect of introducing flash monitoring in a diabetes centre. Compared with the total type 1 population, flash monitor users were typically younger, more affluent and had lower baseline HbA1c. There was a 49% increase in the proportion achieving a target HbA1c of <58 mmol/mol (<7.5%) and a >50% decrease in the proportion with an HbA1c of >75 mmol/mol (>9.0%). Flash monitor use was also associated with a reduction in admissions for diabetic ketoacidosis. Self-reported hypoglycaemia increased with flash monitoring use, although this was likely to be a consequence of greater recognition of events. User satisfaction was extremely high; however, there was an increase in anxiety and depression symptoms. Taken together, the authors conclude that these findings suggest that flash monitoring is capable of reducing HbA1c in a ‘real-world’ setting.

Type 2 diabetes: a multifaceted disease – published online 03/06/2019

Figure from Pearson review

Ewan R. Pearson

Type 2 diabetes is a complex disease which, in the broader sense, can be considered a composite of ‘missed’ cases of monogenic and other forms of diabetes, as a result of poor diagnostics, and true polygenic type 2 diabetes. In this issue, Ewan Pearson (https://doi.org/10.1007/s00125-019-4909-y) summarises the recent advances in dissecting the aetiological processes that drive the development of diabetes using measures of phenotype and genotype, including partitioned polygenic scores. Consideration of these aetiological processes can provide insight into the variation in diabetes progression, drug response and risk of complications, supporting a precision medicine approach to diabetes care. The figure from this review is available as a downloadable slide.

Genome editing of human pancreatic beta cell models: problems, possibilities and outlook – published online 03/06/2019

Figure from Balboa review

Diego Balboa, Rashmi B. Prasad, Leif Groop, Timo Otonkoski

Genome engineering technologies, in particular, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9), have revolutionised the possibilities for genome manipulation. In this issue, Balboa et al (https://doi.org/10.1007/s00125-019-4908-z) summarise the progress and challenges in applying CRISPR-Cas9 to different human beta cell models to dissect the mechanisms behind diabetes-associated genetic variants. Genome editing can most effectively be used in induced pluripotent stem cells prior to their differentiation into beta cells. This method has the unique advantage of allowing studies in patient-derived cells. However, the functional immaturity of stem-cell derived islets is currently still a major limitation of this approach. At present, genome editing in primary human beta cells has not been possible, but new technologies may enable this in the future. Ingenious use of CRISPR-Cas9 and similar techniques will undoubtedly accelerate advances in our understanding of the interplay between type 1 diabetes and type 2 diabetes risk-associated genetic variants and their functional role in predisposing to the disease. The figure from this review is available as a downloadable slide.

Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice – published online 28/05/2019

Fig from Hansen paper

Camilla H. F. Hansen, Christian S. Larsen, Henriette O. Petersson, Line F. Zachariassen, Andreas Vegge, Charlotte Lauridsen, Witold Kot, Łukasz Krych, Dennis S. Nielsen, Axel K. Hansen

The influence of the intestinal environment on autoimmunity has become very relevant of late. As such, identifying means to target specific microbes and improve intestinal function would be a valuable achievement for future prevention/treatment strategies for dysbiosis. In this issue, Hansen et al (https://doi.org/10.1007/s00125-019-4910-5) present results that: (1) demonstrate how prebiotic xylooligosaccharides (XOS) can delay diabetes onset and reduce autoimmune reactions towards the pancreatic beta cells and salivary glands in NOD mice; and (2) show that the protective effects offered by XOS were regulated by both microbe-dependent and -independent pathways. The authors suggest that reduced gut permeability and associated induction of anti-inflammatory mucosal immune responses play a central role in protection against autoimmune destruction of beta cells and salivary glands. Considering that many individuals with autoimmunity have dysfunctional barrier function, these findings strongly encourage further testing of the beneficial effects of prebiotics in individuals predisposed to autoimmune diseases, such as type 1 diabetes.

Neprilysin inhibition: a new therapeutic option for type 2 diabetes? – published online 14/05/2019

Figure from Esser paper

Nathalie Esser, Sakeneh Zraika

Neprilysin is a peptidase that hydrolyses oligopeptide substrates, such as glucagon-like peptide-1, which are known to regulate glucose homeostasis. Recent studies in humans with diabetes have demonstrated that a new class of drug for heart failure, which combines a neprilysin inhibitor with an angiotensin receptor blocker, improves glycaemic control, enhances insulin sensitivity and reduces the need for initiation of insulin therapy. In this issue, Esser and Zraika (https://doi.org/10.1007/s00125-019-4889-y) summarise these data, with an emphasis on neprilysin inhibition as the principal contributor to these positive clinical outcomes. The authors also review supporting data from preclinical studies to make the case that neprilysin inhibition may be a novel therapeutic approach for the treatment of type 2 diabetes. Potential mechanisms underlying beneficial glycaemic effects are discussed, as well as possible deleterious effects that may limit the clinical use of neprilysin inhibitors. Beyond its beneficial impact on glycaemic control, neprilysin inhibition could also exert favourable effects in treating complications of diabetes. The figures from this review are available as a downloadable slideset.

Moderate weight change following diabetes diagnosis and 10 year incidence of cardiovascular disease and mortality – published online 07/05/2019

Jean Strelitz, Amy L. Ahern, Gráinne H. Long, Matthew J. L. Hare, Greg Irving, Clare E. Boothby, Nicholas J. Wareham, Simon J. Griffin

Cardiovascular disease (CVD) is the most common complication of diabetes. Evidence of the impact of weight loss on incidence of CVD events among adults with diabetes is sparse and conflicting. In this issue, Strelitz et al (https://doi.org/10.1007/s00125-019-4886-1) report the results of a cohort analysis of 725 adults with screen-detected diabetes recruited from general practices across eastern England. They found that people with type 2 diabetes who achieved ≥5% weight loss in the year after diabetes diagnosis had a 48% lower hazard of CVD after 10 years of follow-up compared with people who maintained their weight. Associations between weight gain and CVD were less clear. Participants did not receive tailored weight loss support and most participants were overweight or obese at the time of diabetes diagnosis. According to the authors, the results suggest that moderate weight loss may lead to substantial long-term CVD reduction and may be achievable among individuals with a new diagnosis of type 2 diabetes.

The impact of diabetes on productivity in China – published online 27/04/2019

Figure from Hird paper

Thomas R. Hird, Ella Zomer, Alice Owen, Lei Chen, Zanfina Ademi, Dianna J. Magliano, Danny Liew

Diabetes can cause reduced workforce participation and productivity whilst at work. However, current estimates of the economic burden of diabetes in China do not incorporate diabetes-related productivity loss. In this issue, Hird et al (https://doi.org/10.1007/s00125-019-4875-4) used life table modelling to estimate productivity-adjusted life years (PALYs) lost among those with diabetes over the working lifetime of the Chinese population. Among the 56.4 million people with diabetes of working age in China in 2017 with simulated follow-up to retirement age, diabetes was predicted to reduce years of life lived by 22.7 million (3.7%). Taking into account diabetes-related labour force dropout, absenteeism, presenteeism (reduced efficiency at work) and premature mortality, diabetes also caused the loss of 75.8 million PALYs (15.1%). This equates to an estimated Chinese ¥17.4 trillion (US$2.6 trillion) loss in gross domestic product (GDP) over the working lifetime of the cohort, highlighting the long-term economic consequences of diabetes in the Chinese population. The authors state that, given the considerable economic impact of these productivity losses, prevention of diabetes and its complications should be considered an investment with potentially large economic benefits in the longer term.

Elevated brain glutamate levels in type 1 diabetes: correlations with glycaemic control and age of disease onset but not with hypoglycaemia awareness status – published online 19/04/2019

Wiegers upfront image

Evita C. Wiegers, Hanne M. Rooijackers, Jack J.A. van Asten, Cees J. Tack, Arend Heerschap, Bastiaan E. de Galan, Marinette van der Graaf

Chronic hyperglycaemia in type 1 diabetes affects the structure and function of the brain. Diabetes onset in early childhood and poor glycaemic control are known risk factors for these effects. Many fear that recurrent hypoglycaemia may induce similarly devastating effects on the brain. Changes in the neurochemical profile of the brain may be early signs of altered brain structure/function. In this issue, Wiegers et al (https://doi.org/10.1007/s00125-019-4862-9) studied the effects of type 1 diabetes and the burden of hypoglycaemia on brain metabolite levels using 1H magnetic resonance spectroscopy. They found higher cerebral glutamate levels in individuals with type 1 diabetes compared with control participants without diabetes, irrespective of the state of hypoglycaemia awareness (impaired awareness vs normal awareness). Among those with type 1 diabetes, cerebral glutamate levels correlated with glycaemic control (HbA1c levels) and the age of disease diagnosis. The burden of hypoglycaemia had, at most, a limited impact on the neurochemical profile of individuals with type 1 diabetes. The authors conclude that glutamate could potentially act as an early marker of hyperglycaemia-induced cerebral complications.

Metformin increases endogenous glucose production in non-diabetic individuals and individuals with recent-onset type 2 diabetes – published online 11/04/2019

Figure from Gormsen paper

Lars C. Gormsen, Esben Søndergaard, Nana L. Christensen, Kim Brøsen, Niels Jessen, Søren Nielsen

 

Although metformin is the endorsed first-line glucose-lowering drug for individuals with type 2 diabetes, the exact mechanisms by which the drug exerts its effects are still debated. Studies in individuals with poorly controlled diabetes have indicated that the main site of action is the liver, through reduced hepatic gluconeogenesis, whereas others have demonstrated that the drug may increase intestinal glucose uptake. In this issue, Gormsen et al (https://doi.org/10.1007/s00125-019-4872-7) report that 3 months of metformin treatment lowered blood glucose as expected but, surprisingly, it increased endogenous glucose production. This effect was observed both in individuals with recent-onset type 2 diabetes and age-matched non-diabetic healthy individuals. The authors suggest that the primary glucose-lowering effect of metformin may, thus, be extra-hepatic, at least in healthy individuals and patients with recent-onset diabetes.

Digital health technology and mobile devices for the management of diabetes mellitus: state of the art – published online 08/04/2019

Image from Shan Up front

Rongzi Shan, Sudipa Sarkar, Seth S. Martin

Mobile health (mHealth) for diabetes is a new but rapidly growing field that can potentially increase access to healthcare and improve self-management of diabetes. In this issue, Shan et al (https://doi.org/10.1007/s00125-019-4864-7) review state-of-the-art mHealth interventions for diabetes, discussing how components and features of existing interventions vary according to the specific patient needs to be addressed. The clinical outcomes of mHealth interventions are generally modest but promising. Currently, it is unknown which features are most effective at promoting clinical improvement, but expanding usage, personalisation and the incorporation of techniques for precision medicine are key future directions. Addressing barriers, such as cost, sustainability and integration with the healthcare system, is necessary for mHealth tools to be more widely adopted. The figure from this review is available as a downloadable slide.

Glucose controls glucagon secretion by directly modulating cAMP in alpha cells – published online 05/04/2019

Figure from Yu paper

Qian Yu, Hongyan Shuai, Parvin Ahooghalandari, Erik Gylfe, Anders Tengholm

 

Despite the importance of glucagon in glycaemic control, it remains unclear how glucose regulates glucagon secretion from pancreatic alpha cells. In this issue, Yu et al (https://doi.org/10.1007/s00125-019-4857-6) investigate the role of the intracellular messenger cAMP in alpha-cell-intrinsic glucose regulation of glucagon release. The authors report that glucose-induced alterations of glucagon release are paralleled by changes in subplasmalemmal cAMP concentration in alpha cells. In support of a regulatory role for cAMP, glucose-induced suppression of glucagon release was prevented by imposed elevations in cAMP, while inhibition of protein kinase A (a mediator of the effects of cAMP) mimicked the suppressive effect of glucose on glucagon. Yu and colleagues provide evidence that glucose acts directly on alpha cells to regulate glucagon secretion independent of paracrine signalling from insulin or somatostatin. The authors conclude that these findings point to a new mechanism for glucose control of glucagon release and indicate that the counter-regulatory glucagon response to hypoglycaemia could be enhanced by agents that increase cAMP concentration in alpha cells.

Pregnancy in human IAPP transgenic mice recapitulates beta cell stress in type 2 diabetes – published online 09/03/2019

Gurlo upfront image

Tatyana Gurlo, Sarah Kim, Alexandra E. Butler, Chang Liu, Lina Pei, Madeline Rosenberger, Peter C. Butler

Gestational diabetes is a risk factor for subsequent type 2 diabetes. As the availability of human pancreas tissue in pregnancy is limited, little is known about the islet changes in women vulnerable to type 2 diabetes, either during or after pregnancy. Moreover, most rodent models of type 2 diabetes do not develop gestational diabetes. This may be because, in humans, beta cell failure in type 2 diabetes is characterised by protein misfolding toxicity mediated by islet amyloid polypeptide (IAPP) but rodent IAPP does not form toxic oligomers. In this issue, Gurlo et al (https://doi.org/10.1007/s00125-019-4843-z) investigated whether mice transgenic for human IAPP develop pregnancy-related diabetes. The transgenic mice showed beta cell stress that mimicked the endoplasmic reticulum stress, oxidative damage and attenuated autophagy observed in beta cells in type 2 diabetes. Moreover, this beta cell damage persisted after pregnancy, leading to subsequent diabetes before or during a second pregnancy, with further exacerbation of beta cell stress during the second pregnancy. The authors conclude that this model offers accessible islet tissue to investigate strategies to mitigate beta cell stress during pregnancy, as well as an opportunity to investigate the effects of gestational diabetes on fetal development.

Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis – published online 07/03/2019

Kramer up front image

Caroline K. Kramer, Sara Campbell, Ravi Retnakaran

A series of recent studies has suggested that women who develop gestational diabetes (GDM) have an increased future risk of cardiovascular disease (CVD). However, these studies have yielded varying estimates of the magnitude of risk and offered conflicting evidence on whether this risk is dependent upon the development of type 2 diabetes. In a meta-analysis involving more than 5 million women, Kramer et al (https://doi.org/10.1007/s00125-019-4840-2) report three key findings. First, compared with women who did not have GDM, women with GDM had a twofold higher risk of major cardiovascular events in the years thereafter. Second, this risk was not dependent on the development of intercurrent type 2 diabetes. Third, the risk of CVD in women with GDM was evident as early as the first decade after delivery. Thus, with or without subsequent type 2 diabetes, the diagnosis of GDM should be recognised as a risk factor for future CVD and, hence, an opportunity for early risk modification and, possibly, prevention of the leading cause of mortality in women.

 

No evidence of a causal association of type 2 diabetes and glucose metabolism with atrial fibrillation – published online 27/02/2019

Hadi Harati, Daniela Zanetti, Abhiram Rao, Stefan Gustafsson, Marco Perez, Erik Ingelsson, Joshua W. Knowles

Type 2 diabetes and less marked forms of dysglycaemia have been associated with increased risk of incident atrial fibrillation in epidemiological studies. However, it is unclear whether this association is causal. In this issue, Harati et al (https://doi.org/10.1007/s00125-019-4836-y) used Mendelian randomisation to answer this question. Using publicly available summary statistics data from genome-wide association studies, the authors did not find a causal role between genetically programmed type 2 diabetes, fasting blood glucose or HbA1c and the development of atrial fibrillation. These data suggest that drug treatment to reduce dysglycaemia is unlikely to be an effective approach for the prevention of atrial fibrillation. The authors conclude that, in line with the previously reported causal link between BMI and atrial fibrillation, these results suggest that strategies that aim to control type 2 diabetes-related comorbidities (such as obesity) are likely to be more effective in preventing atrial fibrillation than those that aim to control blood glucose.

Spontaneous ketonuria and risk of incident diabetes: a 12 year prospective study – published online 20/02/2019

Fig from Kim paper

Gyuri Kim, Sang-Guk Lee, Byung-Wan Lee, Eun Seok Kang, Bong-Soo Cha, Ele Ferrannini, Yong-ho Lee, Nam H. Cho

Ketones are regarded as a thrifty fuel for peripheral tissues, but the clinical and prognostic significance of mild ketosis is still uncertain. In this issue, Kim and colleagues (https://doi.org/10.1007/s00125-019-4829-x) investigated the association between spontaneous fasting ketonuria and incident diabetes in conjunction with changes in metabolic variables in a large population-based, observational study. During 12 years of follow-up, individuals with fasting ketonuria at baseline maintained lower post-load 1 h and 2 h glucose levels and a higher insulinogenic index, even though the groups with and without ketonuria had comparable baseline values. Individuals with spontaneous fasting ketonuria at baseline had a significantly lower risk of incident diabetes compared with individuals without ketonuria, independently of other metabolic variables. The authors suggest that spontaneous fasting ketonuria may be a novel signature in the modulation of glucose metabolism and may have the potential to prevent diabetes.

Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis – published online 18/02/2019

Fig from Teng paper

Xiaomei Teng, Chen Ji, Huiting Zhong, Dong Zheng, Rui Ni, David J. Hill, Sidong Xiong, Guo-Chang Fan, Peter A. Greer, Zhenya Shen, Tianqing Peng

It is well known that cardiomyocyte dysfunction plays a central role in diabetic cardiomyopathy. However, the role of non-cardiomyocytes in this diabetic complication has not been fully addressed. In this issue, Teng et al (https://doi.org/10.1007/s00125-019-4828-y) report that endothelial cell-specific disruption of calpain reduces cardiomyopathy in a mouse model of diabetes and that the protective effect of endothelial cell-specific calpain disruption may be attributed to attenuated endothelial injury and improved angiogenesis in diabetic hearts. The authors suggest that endothelial cell calpain may promote endothelial cell death and inhibit neovascularisation via suppression of β-catenin in diabetes. They conclude that calpain-mediated endothelial cell dysfunction may be important in the pathogenesis of diabetic cardiac complications and, thus, pharmaceutical approaches targeting calpain may prove useful for the treatment of diabetes and its cardiovascular complications.

NAD+ metabolism as a target for metabolic health: have we found the silver bullet? – published online 16/02/2019

Image from Connell UP

Niels J. Connell, Riekelt H. Houtkooper, Patrick Schrauwen

Targeting NAD+ metabolism to improve metabolic health through sirtuin activation is a possible avenue for new therapeutic approaches to treat metabolic disorders. In this issue, Connell et al (https://doi.org/10.1007/s00125-019-4831-3) review the advances in and approaches undertaken for targeting  NAD+ metabolism in humans and their effects on human metabolism. Preclinical models have demonstrated promising results of metabolic improvement by influencing NAD+ metabolism. The transition from the preclinical to the clinical setting has proven more ambiguous and results seen in preclinical models are yet to be replicated in humans. The targeting of NAD+ metabolism in humans remains promising for improving metabolic health but warrants further exploration. The figures from this review are available as a downloadable slideset.

Black African men with early type 2 diabetes have similar muscle, liver and adipose tissue insulin sensitivity to white European men despite lower visceral fat – published online 16/02/2019

Fig from Bello paper

Oluwatoyosi Bello, Cynthia Mohandas, Fariba Shojee-Moradie, Nicola Jackson, Olah Hakim, K. George M. M. Alberti, Janet L. Peacock, A. Margot Umpleby, Stephanie A. Amiel, Louise M. Goff

 

Black African populations experience disproportionately high rates of type 2 diabetes but typically present with less visceral fat deposition than other ethnic groups. In this issue, Bello et al (https://doi.org/10.1007/s00125-019-4820-6) use highly sensitive techniques to investigate ethnic differences in visceral fat and tissue-specific insulin sensitivity between men of black African and white European ethnicity with type 2 diabetes. They report comparable insulin sensitivity in the liver, skeletal muscle and adipose tissue in the two groups, despite lower visceral fat in the black African men. The authors suggest that excess adiposity, particularly visceral deposition, is a smaller driver of insulin resistance in black African men than in white European men and this supports the notion that there may be ethnic differences in the development of type 2 diabetes.

Beta cells in type 1 diabetes: mass and function; sleeping or dead? – published online 14/02/2019

Fig 1 from Oram paper

Richard A. Oram, Emily K. Sims, Carmella Evans-Molina

Recent in vivo and human pancreatic analyses have challenged the notion that all beta cells are destroyed in longstanding type 1 diabetes. These findings have raised a number of questions regarding how remaining beta cells have escaped immune destruction, whether pools of ‘sleeping’ or dysfunctional beta cells could be rejuvenated and whether there is potential for new growth of beta cells. In this issue, Oram et al (https://doi.org/10.1007/s00125-019-4822-4) address these open questions by reviewing existing clinical and histological data on long-duration type 1 diabetes. They summarise evidence for new growth of beta cells and beta cell turnover in type 1 diabetes and highlight recent data supporting the idea that beta cell abnormalities and heterogeneity contribute to type 1 diabetes pathogenesis. The authors also discuss the possibility that some beta cells in longstanding type 1 diabetes may be ‘sleeping’, dysfunctional or dedifferentiated. Finally, they highlight specific settings where functional recovery seems to occur and suggest ideas for future research. The figure from this review is available as a downloadable slide.

Genomic annotation of disease-associated variants reveals shared functional contexts – published online 12/02/2019

Fig from Kyono paper

Yasuhiro Kyono, Jacob O. Kitzman, Stephen C. J. Parker

Genome-wide association studies (GWAS) of diabetes and related glycaemic traits have collectively identified hundreds of independent risk-associated single nucleotide polymorphisms (SNPs). The majority of these loci (>90%) localise to non-coding regions of the genome, strongly suggesting gene regulation as a major driving mechanism. In this issue, Kyono et al (https://doi.org/10.1007/s00125-019-4823-3) review how the generation and analysis of epigenomics datasets have enabled insights into the biology that underlies these regions of genetic predisposition to disease. They review existing and emerging tools that can be used to determine which subset of SNPs might be functionally significant and the context in which their function may emerge. Collectively, recent literature suggests that different diabetes and related trait SNPs scattered throughout the genome may operate through the same transcriptional regulatory pathways. The figures from this review are available as a downloadable slideset.

Maternal glucose levels during pregnancy and childhood adiposity in the Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study – published online 15/01/2019

Flowchart from Lowe paper

William L. Lowe Jr, Lynn P. Lowe, Alan Kuang, Patrick M. Catalano, Michael Nodzenski, Octavious Talbot, Wing-Hung Tam, David A. Sacks, David McCance, Barbara Linder, Yael Lebenthal, Jean M. Lawrence, Michele Lashley, Jami L. Josefson, Jill Hamilton, Chaicharn Deerochanawong, Peter Clayton, Wendy J. Brickman, Alan R. Dyer, Denise M. Scholtens, Boyd E. Metzger, on behalf of the HAPO Follow-up Study Cooperative Research Group

The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study identified continuous associations between maternal glucose levels during pregnancy at ~28 weeks’ gestation and newborn adiposity. In this issue, Lowe Jr et al, on behalf of the HAPO Follow-up Study Cooperative Research Group (https://doi.org/10.1007/s00125-018-4809-6), examined associations between maternal pregnancy glucose, including levels below those diagnostic of gestational diabetes, and offspring adiposity during early adolescence (mean age 11.4 years). The authors report that maternal fasting glucose and glucose post-load levels at 1 and 2 h were associated with childhood obesity and per cent fat >85th percentile across the maternal glucose continuum, independent of the BMI of the mother. Continuous relationships between maternal glucose levels and child adiposity measures were also observed. The authors conclude that these findings demonstrate that the full range of maternal glucose levels are independently associated with child adiposity, which could have implications for glucose treatment targets in mothers with pre-existing or gestational diabetes, especially those with other risk factors for greater offspring adiposity, including obesity.

The effect of dapagliflozin on glycaemic control and other cardiovascular disease risk factors in type 2 diabetes mellitus: a real-world observational study – published online 10/01/2019

McGurnaghan fig 1

Stuart J. McGurnaghan, Liam Brierley, Thomas M. Caparrotta, Paul M. McKeigue, Luke A. K. Blackbourn, Sarah H. Wild, Graham P. Leese, Rory J. McCrimmon, John A. McKnight, Ewan R. Pearson, John R. Petrie, Naveed Sattar, Helen M. Colhoun, on behalf of the Scottish Diabetes Research Network Epidemiology Group

Dapagliflozin is a sodium–glucose cotransporter 2 (SGLT2) inhibitor, used to treat type 2 diabetes. In this issue, McGurnaghan et al (https://doi.org/10.1007/s00125-018-4806-9) report on a study undertaken using the large Scottish database Scottish Care Information-Diabetes (SCI-Diabetes). The study measured the effects of treatment with dapagliflozin, which was administered in routine clinical practice. Dapagliflozin was associated with decreases in HbA1c, blood pressure and weight, which were maintained over time with no clear effects on kidney function. In addition, although the study was small, dapagliflozin did not increase the rate of adverse events. The authors conclude that the beneficial effects observed in this study are similar to those from clinical trials of dapagliflozin, but that this study includes a wider mix of patients, including off-license users in whom a similar effectiveness of treatment was demonstrated. In summary, the effects of dapagliflozin on lowering blood glucose, blood pressure and weight in a real-world setting appear to be similar to those observed in previously conducted clinical trials.

Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes – published online 03/01/2019

Fig 1 from Groen

Martin B. Groen, Trine A. Knudsen, Stine H. Finsen, Bente K. Pedersen, Ylva Hellsten, Stefan P. Mortensen

Type 2 diabetes is associated with vascular complications, including reduced blood flow in tissues. Plasma ATP is a potent vasodilator that is thought to play a role in the local regulation of blood flow, and it is possible that ATP signalling is impaired in individuals with type 2 diabetes. In this issue, Groen et al (https://doi.org/10.1007/s00125-018-4790-0)  measured femoral arterial and venous plasma ATP levels during normoxia, hypoxia and one-legged knee-extensor exercise in nine individuals with type 2 diabetes and eight control individuals. They report that individuals with type 2 diabetes had a blunted increase in ATP and blood flow, compared with non-diabetic individuals, when exposed to hypoxia (a potent stimulus for ATP release). The authors also found that, compared with the non-diabetic group, individuals with type 2 diabetes had lower venous plasma ATP levels and blood flow in the exercising leg during the one-legged knee-extensor exercise. In additional experiments, the individuals with type 2 diabetes had a lower vasodilatory response to exogenous ATP. Restoration of ATP release (e.g. by phosphodiesterase 3- or phosphodiesterase 5-inhibitors) could, therefore, be a novel treatment to help restore tissue perfusion in individuals with type 2 diabetes.

Top